ESTUDIO DE CASO DE LA CAPACITACIÓN PROFESIONAL DEL MAESTRO DE MATEMÁTICAS DEL NIVEL CUARTO AL SEXTO GRADO

Sometido como requisito final para el grado doctoral en Educación con especialidad en Docencia por

Ana M. Pérez Rivera

Febrero 2016
TABLA DE CONTENIDO

Página

TABLA DE CONTENIDO .. iii
Lista de Tablas .. viii
Lista de Figuras .. x
Lista de Apéndices .. xi
SUMARIO ... xii
AGRADECIMIENTO .. xiv
DEDICATORIA ... xv
CAPÍTULO I: INTRODUCCIÓN .. 1
 Situación ... 2
 Planteamiento del problema ... 8
 Propósito ... 11
 Objetivos ... 12
 Justificación .. 13
 Preguntas de investigación ... 15
 Aportación del estudio ... 16
 Definición de términos ... 18
CAPÍTULO II: REVISIÓN DE LITERATURA ... 20
 Marco histórico .. 21
 Ejercicio y práctica .. 21
 Aritmética significativa ... 21
 Nueva matemática ... 22
 De vuelta a lo básico .. 24
 Solución de problemas ... 24
 Estándares, evaluación y accountability .. 25
 Plan de flexibilidad ... 26
 Reforma de Matemáticas basada en estándares ... 28
 Marco conceptual .. 32
 Enseñanza de las Matemáticas .. 32
 Tarea para la enseñanza .. 34
 Implantación de la Tarea ... 36
 Discusiones Matemáticas .. 36
 Expectativas del maestro ... 37
 Enseñanza de las matemáticas en el nivel de cuarto al sexto grado 38
 El rol del maestro en la reforma basada en estándares .. 42
 Desarrollo profesional ... 42
Tabla de contenido

<table>
<thead>
<tr>
<th>Tema</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aumento del conocimiento del contenido y pedagógico</td>
<td>43</td>
</tr>
<tr>
<td>Duración (sostenido y continuo)</td>
<td>45</td>
</tr>
<tr>
<td>Aprendizaje activo</td>
<td>46</td>
</tr>
<tr>
<td>Participación colectiva</td>
<td>46</td>
</tr>
<tr>
<td>Coherencia</td>
<td>47</td>
</tr>
<tr>
<td>Desarrollo profesional tradicional efectivo</td>
<td>47</td>
</tr>
<tr>
<td>Comunidades de aprendizaje</td>
<td>48</td>
</tr>
<tr>
<td>Oportunidades para la reflexión</td>
<td>50</td>
</tr>
<tr>
<td>Coaching</td>
<td>51</td>
</tr>
<tr>
<td>Apoyo del sistema educativo</td>
<td>52</td>
</tr>
<tr>
<td>Programa Mathematics and Science Partnership</td>
<td>52</td>
</tr>
<tr>
<td>Cambio del maestro</td>
<td>55</td>
</tr>
<tr>
<td>Conocimiento del maestro</td>
<td>56</td>
</tr>
<tr>
<td>Creencias del maestro</td>
<td>61</td>
</tr>
<tr>
<td>Relación de creencias, conocimiento y prácticas educativas</td>
<td>63</td>
</tr>
<tr>
<td>Factores asociados al programa de desarrollo profesional</td>
<td>68</td>
</tr>
<tr>
<td>Factores asociados al contexto escolar</td>
<td>71</td>
</tr>
<tr>
<td>Avalúo del aprendizaje</td>
<td>71</td>
</tr>
<tr>
<td>Marco Metodológico</td>
<td>78</td>
</tr>
<tr>
<td>Investigaciones con enfoque en la enseñanza de las Matemáticas</td>
<td>79</td>
</tr>
<tr>
<td>Metodología cualitativa</td>
<td>79</td>
</tr>
<tr>
<td>Metodología cuantitativa</td>
<td>84</td>
</tr>
<tr>
<td>Metodología de métodos mixtos</td>
<td>88</td>
</tr>
<tr>
<td>Investigaciones con enfoque en el desarrollo profesional</td>
<td>93</td>
</tr>
<tr>
<td>Metodología cualitativa</td>
<td>93</td>
</tr>
<tr>
<td>Metodología cuantitativa</td>
<td>95</td>
</tr>
<tr>
<td>Metodología de métodos mixtos</td>
<td>99</td>
</tr>
<tr>
<td>CAPÍTULO III: PROCEDIMIENTOS</td>
<td>106</td>
</tr>
<tr>
<td>Diseño</td>
<td>106</td>
</tr>
<tr>
<td>Estudio de caso</td>
<td>107</td>
</tr>
<tr>
<td>Iniciativa Mathematics and Science Partnership: El Estudio de caso</td>
<td>112</td>
</tr>
<tr>
<td>Participantes</td>
<td>115</td>
</tr>
<tr>
<td>Maestros</td>
<td>116</td>
</tr>
<tr>
<td>Recursos</td>
<td>119</td>
</tr>
<tr>
<td>Recopilación de datos</td>
<td>119</td>
</tr>
</tbody>
</table>
Tabla de contenido

<table>
<thead>
<tr>
<th>Capítulo IV: Hallazgos</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unidad de análisis</td>
<td>138</td>
</tr>
<tr>
<td>Participantes</td>
<td>141</td>
</tr>
<tr>
<td>Recolección y análisis de datos</td>
<td>142</td>
</tr>
<tr>
<td>Evolución del maestro: la ruta hacia una nueva identidad profesional</td>
<td>144</td>
</tr>
<tr>
<td>Contexto MSP</td>
<td>152</td>
</tr>
<tr>
<td>Estructura</td>
<td>153</td>
</tr>
<tr>
<td>Reclutamiento</td>
<td>164</td>
</tr>
<tr>
<td>Conocimientos sustanciales</td>
<td>165</td>
</tr>
<tr>
<td>Vinculado</td>
<td>191</td>
</tr>
<tr>
<td>Instancias de transformación</td>
<td>194</td>
</tr>
<tr>
<td>Ambientes de aprendizaje participativos</td>
<td>196</td>
</tr>
<tr>
<td>Persona</td>
<td>197</td>
</tr>
<tr>
<td>Imagen del maestro</td>
<td>198</td>
</tr>
<tr>
<td>Desarrollar confianza</td>
<td>203</td>
</tr>
<tr>
<td>Respaldo al maestro</td>
<td>205</td>
</tr>
<tr>
<td>Quehacer educativo</td>
<td>206</td>
</tr>
<tr>
<td>Entornos de enseñanza para el aprendizaje auténtico</td>
<td>206</td>
</tr>
<tr>
<td>Reflexión para el mejoramiento de la enseñanza</td>
<td>210</td>
</tr>
<tr>
<td>Involucramiento del estudiante</td>
<td>212</td>
</tr>
<tr>
<td>Panorama global de los hallazgos</td>
<td>214</td>
</tr>
<tr>
<td>Experiencias de formación de los participantes</td>
<td>215</td>
</tr>
<tr>
<td>Conocimiento del contenido para la enseñanza de las matemáticas</td>
<td>216</td>
</tr>
<tr>
<td>Conocimiento tecnológico</td>
<td>217</td>
</tr>
<tr>
<td>Conocimiento en investigación</td>
<td>218</td>
</tr>
</tbody>
</table>
Reflexión para el mejoramiento .. 218
Aportación del andamiaje de MSP ... 218
Estructura ... 220
Vinculado .. 220
Ambientes de aprendizaje participativos ... 220
Respaldo al maestro ... 221
Reclutamiento ... 221
Alineación de los maestros de los nuevos conocimientos 222
Imagen del maestro .. 222
Instancias de transformación ... 224
Desarrollar confianza .. 225
Alineación de prácticas de enseñanza y nuevos conocimientos 225
Entornos de enseñanza para el aprendizaje auténtico 225
Impacto de la gestión del maestro en el mejoramiento académico del estudiante ... 228
Involucramiento del estudiante ... 228

CAPÍTULO V: DISCUSIÓN DE LOS HALLAZGOS, IMPLICACIONES Y RECOMENDACIONES ... 230
La esencia de la capacitación profesional de la iniciativa MSP 232
Aportación del contexto MSP en la evolución del maestro 234
 Conocimientos sustanciales para la enseñanza de las matemáticas 237
 Conocimientos tecnológicos .. 243
 Conocimientos sobre investigación en acción 244
 Ambientes de aprendizaje participativos .. 244
Vinculado ... 247
Larga duración .. 248
Participación colectiva .. 249
Centro de recursos .. 251
Visitas de apoyo .. 252
Instancias de transformación .. 254
El desarrollo de la persona: elemento esencial para la evolución del maestro ... 255
La evolución del maestro como reflejo del mejoramiento de la docencia ... 259
 Entornos de enseñanza para el aprendizaje auténtico 259
 Reflexión para el mejoramiento de la enseñanza 264
 Involucramiento del estudiante ... 266
Propuesta reflexiva sobre la evolución del maestro 268
Implicaciones para el desarrollo profesional 272
Implicaciones para el Departamento de Educación de Puerto Rico 274
Implicaciones para la investigación ... 277
Recomendaciones para programas de desarrollo profesional ... 279
Recomendaciones para futuras investigaciones ... 280
Recomendaciones a los directores de escuela ... 281
Recomendaciones para el Departamento de Educación ... 283
Referencias .. 284
Lista de Apéndices ... 311
LISTA DE TABLAS

<table>
<thead>
<tr>
<th>Tabla</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alineación de los objetivos de logros y los métodos más apropiados para el avalúo</td>
</tr>
<tr>
<td>2</td>
<td>Fondos federales que ha recibido el DEPR bajo el programa MSP</td>
</tr>
<tr>
<td>3</td>
<td>Datos demográficos de los participantes</td>
</tr>
<tr>
<td>4</td>
<td>Años en que los participantes se han capacitado profesionalmente en MSP</td>
</tr>
<tr>
<td>5</td>
<td>Evidencia de función instrumental del contexto escolar donde se desempeña el maestro que asiste a MSP: Respuestas a la pregunta, Explique en qué forma los diferentes niveles del sistema le dieron apoyo una vez finalizada su participación en los talleres</td>
</tr>
<tr>
<td>6</td>
<td>Expresiones de los participantes que avalan el formato de los talleres</td>
</tr>
<tr>
<td>7</td>
<td>Comentarios identificados en la revisión de documentos que evalúan en forma positiva los talleres</td>
</tr>
<tr>
<td>8</td>
<td>Expresiones de los maestros respecto a las visitas de apoyo</td>
</tr>
<tr>
<td>9</td>
<td>Fragmento de entrevista de las respuestas de los maestros al preguntarle sobre los conocimientos que habían adquirido para enseñar matemáticas</td>
</tr>
<tr>
<td>10</td>
<td>Temas desarrollados para el conocimiento especializado del contenido</td>
</tr>
<tr>
<td>11</td>
<td>Evidencias para el desarrollo del conocimiento pedagógico del contenido de la materia en las estrategias de recolección de datos con los maestros</td>
</tr>
<tr>
<td>12</td>
<td>Evidencia que sostiene la adquisición de conocimiento del contenido curricular de matemáticas</td>
</tr>
<tr>
<td>13</td>
<td>Evidencias que sustentan la categoría imagen del maestro</td>
</tr>
<tr>
<td>14</td>
<td>Reflexiones en el documento Propuestas de investigación en acción que evidencian que otros participantes de MSP han ganado nuevo aprendizaje</td>
</tr>
<tr>
<td>15</td>
<td>Categorías asociadas a las experiencias de los maestros en MSP</td>
</tr>
<tr>
<td>16</td>
<td>Categorías que sostienen el andamiaje de MSP que favorece la adquisición del conocimiento y transferencia a las prácticas de enseñanza</td>
</tr>
</tbody>
</table>
Lista de tablas

<table>
<thead>
<tr>
<th>Tabla</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Categorías que sostienen el apoderamiento de los conocimientos de los maestros en MSP</td>
</tr>
<tr>
<td>18</td>
<td>Categorías que sostienen las prácticas de enseñanza de los maestros que están alineadas a los conocimientos adquiridos en el programa de desarrollo profesional</td>
</tr>
<tr>
<td>19</td>
<td>Categorías establecidas sobre el impacto del maestro en el mejoramiento académico del estudiante</td>
</tr>
</tbody>
</table>
LISTA DE FIGURAS

<table>
<thead>
<tr>
<th>Figura</th>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Diseño para el estudio de caso</td>
<td>110</td>
</tr>
<tr>
<td>2</td>
<td>Proceso de codificación de los datos</td>
<td>129</td>
</tr>
<tr>
<td>3</td>
<td>Proceso de análisis de datos</td>
<td>132</td>
</tr>
<tr>
<td>4</td>
<td>Relación entre las dimensiones de contexto, persona y quehacer educativo en la categoría evolución del maestro</td>
<td>145</td>
</tr>
<tr>
<td>5</td>
<td>Interacción del contexto MSP y el contexto escolar en la evolución del maestro</td>
<td>151</td>
</tr>
<tr>
<td>6</td>
<td>Representación en el documento Respuesta Escrita Inmediata de M1</td>
<td>170</td>
</tr>
<tr>
<td>7</td>
<td>Diagrama que representa la relación entre conjunto de números en la Respuesta Escrita Inmediata de M3</td>
<td>171</td>
</tr>
<tr>
<td>8</td>
<td>Dimensiones de la evolución del maestro que participó en MSP</td>
<td>213</td>
</tr>
</tbody>
</table>
LISTA DE APÉNDICES

<table>
<thead>
<tr>
<th>Apéndice</th>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Relación de los objetivos, preguntas de investigación y las estrategias de</td>
<td>312</td>
</tr>
<tr>
<td></td>
<td>recolección de datos</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Protocolo y guías de preguntas para la entrevista semiestructurada a Maestros</td>
<td>313</td>
</tr>
<tr>
<td>C</td>
<td>Revisión de documentos: Programa MSP</td>
<td>327</td>
</tr>
<tr>
<td>D</td>
<td>Instrumento Respuesta Escrita Inmediata</td>
<td>328</td>
</tr>
<tr>
<td>E</td>
<td>Notas de reflexión del maestro de matemáticas</td>
<td>331</td>
</tr>
<tr>
<td>F</td>
<td>Invitación a participar de la investigación</td>
<td>333</td>
</tr>
<tr>
<td>G</td>
<td>Perfil de los participantes</td>
<td>334</td>
</tr>
<tr>
<td>H</td>
<td>Protocolo para establecer diálogo con los interesados en la investigación</td>
<td>335</td>
</tr>
<tr>
<td></td>
<td>(Screening)</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Consentimiento informado para un estudio con riesgo mínimo</td>
<td>336</td>
</tr>
<tr>
<td>J</td>
<td>Hoja de control de los participantes</td>
<td>342</td>
</tr>
</tbody>
</table>
SUMARIO

La adopción de un currículo basado en estándares y expectativas en el año 2007, por el Departamento de Educación de Puerto Rico requirió una mayor rigurosidad en la enseñanza. Los salones de clases tenían que convertirse en lugares donde continuamente se promovieran altos niveles para el desarrollo cognitivo y se atendieran las necesidades académicas de todos los estudiantes. El desarrollo profesional del maestro en servicio es la respuesta del Departamento de Educación de Puerto Rico para apoderar a los maestros de los conocimientos necesarios que le permitan enfrentar los retos del currículo basado en estándares. Se parte de la premisa que el dominio del contenido de la materia y de las estrategias pedagógicas que posee el maestro influye en el aprendizaje del estudiante. A pesar de que el Departamento de Educación de Puerto Rico promueva el desarrollo profesional del maestro no se han logrado las metas académicas de aprendizaje del estudiante a las cuales se aspira. Tal situación fue lo que motivó esta investigación, cuyo propósito fue explorar la forma en que el maestro internaliza los nuevos conocimientos al participar de un programa de desarrollo profesional.

En la investigación se utilizó el diseño cualitativo de estudio de caso. Una iniciativa del programa Mathematics and Science Partnership (MSP) fue seleccionada como unidad de análisis. Un total de seis maestras que enseñan matemáticas en el nivel de cuarto al sexto grado en escuelas públicas de Puerto Rico conformaron la muestra. La entrevista semiestructurada, las notas de reflexión, la técnica de Respuesta Escrita Inmediata y el cotejo de documentos fueron las estrategias de recolección de datos utilizadas para examinar con profundidad la participación de las maestras en el programa de capacitación profesional. La variedad de estrategias permitió hacer un análisis exhaustivo acerca de las experiencias de las maestras de matemáticas para desarrollar conocimiento del contenido para la enseñanza de las matemáticas.
Una vez analizados los datos se identificaron tres dimensiones que interactuaron para la evolución del maestro de matemáticas como profesional de la enseñanza. Son estas, el contexto de MSP, el maestro como persona y el quehacer educativo. Los vínculos entre elementos del contexto y de la persona fomentaron el mejoramiento del quehacer educativo. De igual forma, elementos del quehacer educativo y del contexto de MSP establecieron alianzas que los beneficiaron mutuamente.

La interacción de las tres dimensiones promovió la efectividad de MSP. Los elementos del contexto favorecedores del aprendizaje del maestro fueron conocimiento de contenido de las matemáticas, el pedagógico de las matemáticas, el pedagógico general, el tecnológico y el de investigación en acción. Además, los escenarios de aprendizaje participativo, las características de larga duración, los vínculos con el trabajo que realiza el maestro y la participación colectiva fomentaron la efectividad de las actividades desarrolladas por el programa. El maestro como persona reflejó una imagen predispuesta al cambio y su paso por el programa ha fortalecido su confianza como maestro de matemáticas. El respaldo que ofrece el programa MSP a la labor del maestro impulsa el involucramiento de este con las actividades de capacitación desarrolladas. El quehacer educativo se benefició en cuanto el maestro comenzó a implantar los nuevos aprendizajes y a lograr un mayor involucramiento de los estudiantes en el proceso de enseñanza y aprendizaje.

En esta investigación se identificaron unos elementos del desarrollo profesional que genera cambios. Los sujetos representaban al maestro que participa en forma voluntaria de programas de desarrollo profesional y cuya preparación es en educación general. Los resultados proporcionan información que sirve de marco de referencia para el diseño de programas de capacitación profesional dirigidos a estos maestros.
AGRADECIMIENTO

He culminado la ruta que una vez comencé en búsqueda de mi grado doctoral en educación. Durante el recorrido por ese trayecto interactué con educadores que aportaron con su disposición y conocimientos a mi crecimiento como persona y educadora. Agradezco profundamente y valoro cada minuto que dedicaron para que alcanzara mi gran sueño.

A usted, doctora Alicia González de la Cruz, gracias por compartir sus saberes. Saberes que comenzaron a nutrirme desde mis inicios en el programa doctoral. Al llegar a la etapa de disertación su rol como mentora fue crucial para que yo lograra afinar mis destrezas como investigadora, mejorar mis destrezas de razonamiento y realizar una investigación con el potencial de aportar al mejoramiento de la educación de nuestro país.

Reconozco además, el apoyo del doctor Ángel Canales Encarnación y del doctor Edgardo Quiñones Rodríguez, quienes al formar parte del comité dedicaron esfuerzos y tiempo a colaborar con mi estudio. Ustedes forman parte de los educadores que siempre tendré en mi mente y en mi corazón.

La disposición de la doctora Mariwilda Padilla Díaz y la doctora Karen González Parrilla de participar como lectoras en mi investigación contribuyó al fortalecimiento del proceso de mi disertación. Es algo que valoro, aprecio y siempre recordaré.

No puedo terminar sin dejarle saber a la doctora Sonia Dávila Velázquez lo mucho que aprendí en sus clases y las huellas que dejó para mi crecimiento como profesional. Gracias.
DEDICATORIA

A Carol Maeli

Fuiste tú quien me impulsaste a conseguir mi grado doctoral. Lo típico es que los padres impulsen a sus hijos. Hoy te doy las gracias por haberme inspirado y por darme fuerza hasta alcanzar mi gran sueño. Durante este largo caminar siempre estuviste a mi lado dándome aliento y apoyo. Fueron muchas las veces que te quité mi tiempo para usarlo en mis estudios. Nunca te quejaste. Hoy te dedico el fruto de mi esfuerzo. Soy bendecida porque te tengo.
CAPÍTULO I

INTRODUCCIÓN

La ley No Child Left Behind (NCLB) del 8 de enero del 2002 establece la capacitación profesional de calidad para el maestro como un elemento indispensable en la reforma de matemáticas basada en estándares (US Department of Education [USDE], 2010). El desarrollo profesional tiene el propósito de fortalecer el conocimiento de contenido y pedagógico del maestro para que implante prácticas de enseñanza enfocadas en las ideas matemáticas y en el desarrollo conceptual (Snowder, 2007). Se desarrolla la capacidad del maestro como un medio para fortalecer el aprovechamiento académico del estudiante. A pesar de todos los programas de desarrollo profesional que implanta el Departamento de Educación de Puerto Rico (DEPR) para capacitar a los maestros de matemáticas, no se alcanzan las metas de aprovechamiento académico establecidas para dicha asignatura (DEPR, 2013a). Esta investigación utilizó la metodología cualitativa del estudio de caso para explorar el problema antes expuesto. Los participantes seleccionados fueron seis maestros de matemáticas del nivel de cuarto al sexto que participaron de un programa de desarrollo profesional promovido por una de las iniciativas del programa Mathematics and Science Partnership (MSP).

En este capítulo se presenta el contexto donde se llevó a cabo el estudio, se describe el estado de situación y el trasfondo que fundamentó esta investigación. Además, se establece el problema, se explica el propósito, se enumeran los objetivos y se describen los elementos que justificaron que la misma se llevara a cabo. Se finaliza con la presentación de las preguntas de investigación y las aportaciones que hará la investigación en el campo de la educación puertorriqueña.
Situación

La ley NCLB se estableció con el propósito de proveer una educación de calidad a todo estudiante del sistema educativo público. La misma promueve la reforma escolar, para asegurar que todo niño tenga acceso a estrategias de enseñanza efectivas basadas en investigación, y se le provea un contenido académico de reto (USDE, 2010). El accountability es la estrategia clave identificada para lograr la meta (Taylor, O’Day & Le Floch, 2010). Esta estrategia requiere el establecimiento de altos estándares académicos en todas las materias y promueve la calidad de la enseñanza como un elemento esencial para aumentar el aprendizaje de los estudiantes. La ley NCLB dispone además, que se administren pruebas de lectura y matemáticas alineadas a los estándares. Los resultados de esas pruebas determinan los niveles de dominio de los estudiantes en los estándares de contenido, según las metas académicas que fueron estipuladas. El accountability dispone consecuencias para aquellas escuelas que no alcancen los niveles de estudiantes proficientes o las metas académicas a las que se aspira alcanzar. Hasta el año escolar 2013-2014 esas escuelas se clasificaban en plan de mejoramiento y estaban sujetas a una serie de intervenciones que aumentaban en intensidad al aumentar los años en plan de mejoramiento. En septiembre de 2011 el Departamento de Educación de Estados Unidos le da la oportunidad a los estados de solicitar dispensas en la ley NCLB a través del Plan de flexibilidad. Puerto Rico sometió el Plan que fue aprobado en octubre de 2013 (DEPR, 2014). En dicho Plan el DEPR establece nuevos criterios para evaluar la calidad de los servicios educativos de las escuelas públicas. La nueva clasificación establece las siguientes categorías: (a) escuelas excelencia, (b) escuelas progreso, (c) escuelas enfoque y (d) escuelas prioridad.

Los estándares, que promueve la ley NCLB, son indicadores que identifican los fundamentos esenciales de cada área académica que contribuyen al logro de una educación de...
calidad (DEPR, 2007). Estos establecen los requisitos de conocimiento de contenido de cada materia que cada estudiante debe dominar al terminar un grado. Además, disponen los parámetros que se consideran para preparar las Pruebas Puertorriqueñas de Aprovechamiento Académico, mecanismo establecido para rendir cuentas (accountability) por el estado de la educación en Puerto Rico (DEPR, 2007).

En la materia de matemática se han establecido altos estándares en todos los grados de tal forma que el estudiante pueda utilizar el razonamiento matemático en la solución de problemas, en la toma de decisiones y para adaptarse a los cambios que traen los adelantos tecnológicos (DEPR, 2003; Gay, 2012). Implantar los estándares y expectativas de grado de matemáticas en el nivel de cuarto al sexto le requiere al maestro profundo conocimiento y comprensión del estudiante como aprendiz, y de estrategias pedagógicas centradas en el estudiante (National Council of Teachers of Mathematics [NCTM], 2000) llamadas en la literatura estrategias basadas en la reforma (Jitendra, 2013; Sadri, 2008; Sood & Jitendra, 2007). Además, tienen que dominar contenido conceptual y abstracto en temas de numeración y operaciones, de geometría, álgebra, medición y análisis de datos y probabilidad; debido a que en cada grado el currículo cubre material académico de esas cinco áreas. El dominio de ese contenido le posibilita al maestro desarrollar otros contenidos tales como el del conocimiento pedagógico, el del currículo y el del aprendizaje y sus características (Masters, 2009). El maestro con dominio del conocimiento pedagógico tiene la capacidad de seleccionar de un amplio rango de estrategias de enseñanza y de avalúo para abordar en forma específica los diferentes temas de la materia.

El proceso de enseñanza que requiere el DEPR (2003) fomenta un aprendizaje de las matemáticas donde el estudiante tiene la oportunidad de manipular, experimentar, construir,
cuestionar, imaginar, reflexionar e investigar tanto en contextos concretos como abstractos. El currículo por grado está diseñado a base de cinco estándares académicos y las expectativas de grado correspondientes que incluyen los dominios de contenido que cada estudiante debe aprender. Los mismos no se enseñan en forma fragmentada por disciplina. El programa de matemáticas “promueve la integración del conocimiento matemático e identifica temas centrales que brinden coherencia al estudio progresivo de los contenidos con las herramientas que provee cada disciplina. El estudio de las matemáticas tratará recurrentemente los conceptos fundamentales de las disciplinas con diferentes grados de profundidad, establecerá conexiones y propiciará la integración entre esta y otras áreas” (DEPR, 2003, p. 10).

Esta reforma transforma la orientación de la enseñanza de matemáticas de una tradicional, enfocada en procedimientos y memorización a una basada en grandes ideas matemáticas y desarrollo conceptual (Snowder, 2007). Estos contenidos que identifican los estándares y expectativas de aprendizaje del grado “requieren de la creatividad y el esfuerzo de los maestros para operacionalizarlos en prácticas educativas que mejoren la calidad de la enseñanza” (DEPR, 2007, p. 15). Lograr esta encomienda, supone que el maestro implante un proceso de enseñanza y aprendizaje para desarrollar destrezas de alto pensamiento en el estudiante (Wei, Darling-Hammond, Andree, Richardson & Orphanos, 2009), y diferentes clases de conocimiento matemático que comprenden el dominio del contenido, el conocimiento de las metas del currículo, el conocimiento de cómo los conceptos se representan para enseñarlos en forma efectiva y el conocimiento de cómo el entendimiento del estudiante será evaluado (NCTM, 2000).

Las estrategias para la enseñanza basadas en estándares se llevan a cabo para involucrar al estudiante intelectualmente. Esto requiere que el maestro mientras desempeña su rol,
construya en la comprensión de las matemáticas del estudiante, base la enseñanza en la solución de problemas y cuestione al estudiante para que explique y justifique sus respuestas (Heck, Banilower, Weiss & Rosenberg, 2008). Clarke (1997) estudió la literatura para construir un marco de referencia de seis componentes que definen el rol del maestro que experimenta el proceso de reforma. Indicó Clarke que ese maestro comienza su clase con problemas no rutinarios y no les provee información a sus estudiantes sobre el procedimiento para resolverlos. Ese maestro adapta los materiales de acuerdo al contexto y las necesidades e intereses de los estudiantes. Es el que utiliza una variedad de formas para organizar su salón, que le facilitan atender los diferentes estilos de aprendizaje y la diversidad. Es el que construye la enseñanza usando los métodos y las soluciones de los estudiantes y la dirige enfocada en las grandes ideas. Además, utiliza una variedad de avalúos para informarse acerca del estudiante y para mejorar el proceso de enseñanza y aprendizaje.

“Las investigaciones sugieren que los maestros de matemáticas de Estados Unidos no están bien preparados para el reto que trajo la enseñanza basada en estándares” (Heck et al., 2008, p. 118). Los maestros de matemáticas puertorriqueños del nivel de cuarto al sexto grado se han enfrentado también a esos retos, ya que esta reforma, al igual que la de Estados Unidos, está determinada por la ley NCLB. Tanto las observaciones como los datos de entrevistas, sugieren que el maestro del nivel elemental varía ampliamente en la comprensión de las matemáticas que se requieren para poder enseñar adecuadamente dicha materia (Hill, 2010). Muchos han afrontado dificultad en implantar el contenido curricular (Sadri, 2008), debido a que el mismo promueve un enfoque curricular de una educación basada en proyectos [project-based education] (DEPR, 2010). Esta estrategia de enseñanza, requiere que el maestro involucre al
estudiante en la investigación, sea experto en el desarrollo de conceptos, e incorpore situaciones de vida real en la práctica de la sala de clases y planifique para la integración curricular.

Mejorar el aprendizaje del estudiante se consigue en la medida que se construya la capacidad del maestro para mejorar sus prácticas de enseñanza (Althauser, 2010; Heck et al., 2008; Wei et al., 2009). Hay evidencia que sostiene que los maestros con alto dominio del contenido de conocimiento de la materia y del pedagógico afectan en forma positiva el logro académico del estudiante (Miller & Davison, 2006). Los documentos de reforma y de los estándares no necesariamente logran transformar las prácticas de enseñanza. Para mejorar la calidad educativa de los estudiantes y mejorar la ejecución de las escuelas hay que invertir en la educación del maestro (Elmore, 2002). Muchos educadores e investigadores y legisladores ven en los programas de desarrollo profesional la herramienta por excelencia que usan los sistemas educativos para capacitar y lograr cambios en conocimiento, en las creencias y prácticas de enseñanza de los maestros (Elmore, 2002). Implantar la reforma de matemáticas basada en estándares depende, entonces, de la efectividad con la cual se lleven a cabo los programas para capacitar al maestro (Heck et al., 2008).

De acuerdo a Althauser (2010), muchas investigaciones sugieren que programas de desarrollo profesional bien planificados impactan en forma positiva las prácticas de enseñanza del maestro y el aprovechamiento académico del estudiante. Las mismas han evidenciado que la capacitación profesional de alta calidad desarrolla el aprendizaje profesional del maestro, mejora la enseñanza en la sala de clases y promueve la excelencia en el aprendizaje del estudiante (Wei et al., 2009). Desimone, Porter, Garet, Yoon y Birman (2002), y Elmore (2002) opinan que se está llegando a consenso de lo que significa desarrollo profesional de alta calidad. Una de las características de alta calidad es el foco en el contenido de la materia y en cómo los estudiantes
lo aprenden. Además, proveen oportunidades de aprendizaje activo que armonizan con la práctica diaria del maestro en la sala de clases. Las experiencias de aprendizaje de estos programas en su diseño demuestran coherencia al estar atadas a los estándares y crear oportunidades de participación colectiva de grupos de maestros de la misma escuela, grado o departamento para que en genuina colaboración identifiquen e implanten soluciones a los problemas de aprendizaje de sus estudiantes. Añadieron también, que los programas de capacitación efectivos le proporcionan oportunidad al maestro para desarrollar su liderazgo, tienen larga duración, y usan las teorías de aprendizaje para fundamentar e implantar las estrategias en sus diseños.

El DEPR asigna fondos para contratar compañías que ofrecen servicios profesionales y para establecer alianzas con instituciones de educación superior, de tal forma que se provea al maestro un desarrollo profesional de excelencia. Los programas que se implantan tienen que ser de alta calidad, basados y probados científicamente y que demuestren la transferencia en la sala de clases (DEPR, 2009). Muchos maestros se han beneficiado de los servicios de educación continua con fondos del programa de MSP, cuyo propósito es mejorar y actualizar la enseñanza de ciencias y matemáticas, y el mejoramiento de las destrezas y técnicas de enseñanza (DEPR, 2012). El mismo se implanta mediante la aprobación de proyectos y por alianzas de colaboración entre el DEPR y las instituciones de educación superior. El diseño curricular tiene que estar alineado a los estándares de excelencia de los programas de matemáticas y ciencias. Este programa enfatiza la investigación en acción y el seguimiento y apoyo en la sala de clases. Durante los años del 2009 al 2011 el DEPR recibió $21,602, 412 en fondos MSP (USDE, 2011) destinados a ofrecer desarrollo profesional.
Desafortunadamente, los programas de desarrollo profesional no siempre resultan en aprendizaje profesional del maestro. En un análisis de la calidad de programas de desarrollo profesional, Blank, de las Alas y Smith (2007) encontraron que muchos diseños proveen programas que se extienden por un año en actividades específicas de aprendizaje; sin embargo se cuestiona si ese tiempo es suficiente para que el maestro implante los nuevos aprendizajes y si las actividades de seguimiento son suficientes para lograr mejoramiento en la enseñanza. Identificaron además, que varios de los programas no enfocaron apropiadamente el conocimiento de contenido ni las destrezas en las necesidades específicas que habían sido identificadas por los maestros. Muchos de estos programas son externos al salón de clases y no proveen el apoyo necesario en el proceso de cambio de las prácticas educativas (Collect, 2012). Los talleres, cursos, programas y otro tipo de experiencias para desarrollar competencias en el maestro son necesarias, sin embargo, no son lo suficientemente poderosas y específicas para alterar la cultura del salón de clases (Fullan, 2007).

Planteamiento del problema

El fin último del desarrollo profesional del maestro es mejorar el aprendizaje del estudiante. En los años escolares 2009-2010, 2011-2012 y 2012-2013 no se alcanzaron las metas establecidas en matemáticas en ninguno de los grados, evidenciado por los resultados obtenidos en las Pruebas Puertorriqueñas de Aprovechamiento Académico (DEPR, 2012b; DEPR, 2013a). Aunque, los programas de desarrollo profesional de MSP y los que se proponen con el fondo de Título II parte A (DEPR, 2009) responden a las disposiciones establecidas por la ley NCLB, y se consideran de calidad, está en cuestionamiento el impacto que han tenido en el cambio del maestro (Schaefer, 2004).
El foco del desarrollo profesional es ocasionar cambios en el maestro. Ese proceso de cambio se manifiesta en “cómo los maestros comprenden la naturaleza del conocimiento y el rol del estudiante en el aprendizaje, y en cómo esas ideas acerca del conocimiento y el aprendizaje son manifestadas en la enseñanza y en el trabajo de la clase” (Elmore, 1996, p. 2). Según Guskey (2002), muchos programas de desarrollo profesional no son efectivos debido a que no consideran en su diseño el proceso de cambio del maestro. Los maestros son personas con vividas experiencias, inquietudes y convicciones. Su aprendizaje profesional es afectado por una diversidad de aspectos (factores internos y externos) que influyen en cómo van a proveer la enseñanza (Ottoson, 1997; Smith & Gillespie, 2007; Vetter, 2012).

Además hay una variedad de variables que identifica la literatura que afectan o predisponen el cambio. Entre los factores potenciales que pueden incidir en la aplicación de los aprendizajes que el maestro obtiene de un programa de desarrollo profesional, se identificaron los que corresponden al diseño e implantación del programa (Guskey & Sparks, 1996; Ottoson, 1997), los que responden a la persona como individuo (Ottoson, 1997; Smith & Gillespie, 2007), y los que son externos al individuo que están asociados al contexto escolar (Smith & Gillespie, 2007).

El maestro de matemáticas del nivel cuarto al sexto como todo maestro del sistema de educación pública de Puerto Rico, también se ha enfrentado al cambio que trajo la enseñanza basada en estándares. Ese maestro para ser efectivo tiene que facilitar la discusión en la sala de clases a través del planteamiento de preguntas apropiadas que promuevan el pensamiento y la aportación de ideas de los estudiantes (Ottmar, Rimm-Kaufman, Berry & Larsen, 2013). En el salón de clases donde la enseñanza está basada en estándares tanto el maestro como los estudiantes tienen que utilizar múltiples representaciones, tales como símbolos, graficas,
diagramas y manipulativos; así como la habilidad de entender los conceptos de matemáticas sus conexiones y relaciones.

El DEPR le ha ofrecido la oportunidad al maestro de matemáticas de capacitarse profesionalmente para desarrollar a plenitud sus capacidades y esté apto para implantar la enseñanza de matemáticas basada en la reforma de los estándares (DEPR, 2012). A pesar de todos los esfuerzos la literatura sostiene (Bray, 2011; Clarke, 1997; Schorr, Firestone & However, 2003) que el maestro de matemáticas del nivel cuarto al sexto continua desarrollando una enseñanza tradicional, basada en matemáticas de procedimientos. Álvarez Martes (2013) planteó preocupaciones similares cuando se refirió a la enseñanza de las matemáticas en el DEPR. En las visitas realizadas a la sala de clases como facilitadora docente de Matemáticas del distrito escolar de Carolina, se observó que los maestros de Matemáticas del nivel intermedio aparentan no estar implementando el currículo alineado con los Estándares de Contenido y Expectativas de Grado del programa de Matemáticas según establecido por el Departamento de Educación de Puerto Rico. Incluso, algunos maestros utilizan las guías anteriores o enseñan utilizando metodologías educativas no alineadas a los estándares y las expectativas (p. 3 y 4).

Los hallazgos de la investigación de Álvarez Martes evidenciaron prácticas educativas donde se siguen reglas y enfatizan procesos mecánicos. La autora expresó que “estas prácticas educativas observadas no se alinean a los planteamientos establecidos dentro de la reforma educativa basada en estándares de contenido y expectativas de grado” (p. 231). Indicó, además, que la mayoría de los maestros participantes expresaron que las matemáticas deben enseñarse mediante un modelo estructurado basado en reglas, repetición de conceptos y mediante conferencias de forma guiada.
Estos hallazgos no parecen ser de esta década ya que Elmore (1996) sostuvo que la gran cantidad de fondos para el desarrollo del currículo y la educación del maestro no habían logrado que ocurrieran cambios significativos en las prácticas educativas de los maestros. Además, como se mencionó antes, los resultados de la Pruebas Puertorriqueñas de Aprovechamiento Académico de matemáticas de los grados cuarto al sexto reflejaron que no se estaban alcanzando las metas académicas que ha establecido el DEPR. Estas metas académicas están sostenidas por la enseñanza basada en la reforma de los estándares. Es importante explorar por qué a pesar de tanto esfuerzo se da este fenómeno relacionado con la capacitación profesional del maestro de matemáticas de cuarto al sexto grado. Es necesario que se explore entonces, cuál es el proceso por el cual el maestro internaliza los nuevos aprendizajes relacionados con el contenido y la pedagogía de las matemáticas al participar de un programa de desarrollo profesional.

Propósito

El propósito de esta investigación de estudio de caso fue explorar, describir y entender las experiencias para desarrollar conocimiento del contenido para la enseñanza de las matemáticas de seis maestros del nivel de cuarto al sexto grado, luego de haber participado de una iniciativa de capacitación profesional del programa MSP. Este programa está adscrito a la National Science Foundation (NSF) que apoya alianzas entre instituciones de educación secundaria y la educación de k al 12, para fortalecer y transformar la educación de matemáticas y ciencias. A través de varios años, las instituciones de educación secundaria y las escuelas del DEPR han desarrollado proyectos de capacitación para el maestro, alineados a los estándares de matemáticas.

Se empleó el método de investigación cualitativa porque el foco del estudio fue el significado en contexto (Bloomberg & Volpe, 2012; Meriam, 2009). Este método es
recomendado cuando el investigador está interesado en contestar preguntas del cómo y el por qué (Maxwell, 2012). El estudio de caso fue el diseño seleccionado, ya que se quiso explorar en cómo el MSP aportaba a los nuevos aprendizajes que son necesarios para que el maestro implante la enseñanza de matemáticas como lo requieren los estándares.

La entrevista semiestructurada y la técnica de avalúo Respuesta Escrita Inmediata fueron estrategias de recolección de datos. Los documentos del MSP y las notas de reflexión de los maestros acerca de las prácticas de enseñanza fueron fuentes adicionales para conformar el diseño del estudio. Se utilizaron un total de cuatro estrategias que favorecieron la triangulación de los datos recopilados en el estudio.

El análisis de los datos se llevó a cabo utilizando el modelo de Wolcott (1994) que consta de tres elementos: (a) la descripción, (b) el análisis e (c) interpretación de los datos. El proceso de codificación de análisis inductivo de Creswell (2008) guió la reducción y depuración de la información. A través de este modelo se identificaron fragmentos de textos que formaron las unidades de datos, las cuales se agruparon para formar conceptos o temas hasta finalizar con el establecimiento de las categorías. El modelo de Conocimiento matemático para la enseñanza de Ball, Thames y Phelps (2008) se utilizó como marco de referencia para el análisis e interpretación de los datos.

Objetivos

El método cualitativo de estudio de caso permitió identificar las formas en que un programa de desarrollo profesional aportó para el aprendizaje del maestro. Se identificaron los siguientes objetivos:

1. Explorar las experiencias de un grupo de maestros de cuarto al sexto grado luego de participar de un programa de capacitación profesional.
2. Explorar aquellas características de un programa de desarrollo profesional que promueven el mejoramiento de la enseñanza de matemáticas en el nivel de cuarto al sexto grado.

3. Describir la manera en que el maestro demuestra que se apodera de los conocimientos adquiridos en el programa de capacitación profesional.

4. Describir las formas en que los maestros del nivel de cuarto al sexto vinculan sus prácticas de enseñanza con los conocimientos adquiridos en el programa de capacitación profesional.

5. Describir la manera en que el maestro entiende que su gestión ha impactado el mejoramiento académico del estudiante.

Justificación

El programa de matemáticas del DEPR estableció los documentos Estándares de Contenido y Expectativas de Grado (DEPR, 2007) y Materiales Curriculares para los Grados K-12 (DEPR, 2012a) para asegurar las mismas oportunidades de éxito académico a cada estudiante. El desarrollo profesional del maestro es eje central en el DEPR y está fomentado por la NCLB, para asegurar la capacitación adecuada de cada maestro en la implantación de los estándares de contenido y las expectativas del grado. Es de gran importancia que las investigaciones busquen entender las formas en que los programas de desarrollo profesional favorecen el mejoramiento de la enseñanza, particularmente en un nivel educativo formado por una clase magisterial cuya preparación académica es general y no especializada en la materia.

Se ha desarrollado mucha investigación sobre la capacitación profesional del maestro. En la revisión de la literatura científica explorada para esta investigación se identificaron muchos estudios con el tema de desarrollo profesional, pero muy pocos que exploran el cambio del
maestro de matemáticas del nivel de cuarto al sexto. Entre estos Clarke (1997) examinó las creencias y prácticas de dos maestros de sexto grado implantado un nuevo currículo y mientras participaban de un programa de desarrollo profesional. Los hallazgos reflejaron poco cambio y se identificaron 12 factores que influyen en el cambio del maestro. Por otro lado, Obara y Sloan (2009) examinaron el cambio de tres maestros de sexto grado que estaban implantando un proyecto nuevo fundamentado en la introducción de nuevos estándares. Los maestros participaron de un programa de capacitación profesional de alta calidad. En esta investigación los maestros expresaron que habían tenido grandes cambios que no fueron corroborados en las observaciones de clases. A pesar de que la capacitación era para fomentar el cambio en el maestro hacia la enseñanza conceptual, estos continuaron enfatizando una enseñanza basada en reglas y procedimientos. Otra investigación que aborda el cambio del maestro de matemáticas del nivel elemental fue la de Senger (1999). En la misma el investigador estaba interesado en observar el cambio de tres maestros de cuarto y quinto grado al enseñar con estándares basados en reforma. Los hallazgos reflejaron que el cambio del maestro se da en la medida que la experimentación en la sala de clases resulte en resultados positivos para el aprendizaje.

Los hallazgos de los estudios antes mencionados reflejan que los programas de desarrollo profesional enfrentan una lucha constante para lograr la trasformación hacia el entendimiento de las matemáticas tanto para el estudiante como para el maestro. La NCTM (2000), el documento de Estándares de contenido y expectativas de grado del programa de matemáticas (DEPR, 2007) y la carta circular de matemáticas núm.: 11-2013-2014 (DEPR, 2013) promueven la enseñanza y el aprendizaje de las matemáticas con entendimiento. En un salón donde se enseña con entendimiento el maestro diseña tareas de altas demandas cognitivas, involucra al estudiante en las discusiones de la clases, utiliza el error del estudiante para promover una comunidad de
aprendices y utiliza variadas herramientas para apoyar el aprendizaje del estudiante (Van Es & Conroy, 2009). No hay dudas que ese maestro del nivel cuarto al sexto debe capacitarse para que pueda convertirse en el maestro que anteriormente se describió y que los programas de capacitación deben poseer ciertos elementos necesarios para lograr la transformación de este.

En las bases de datos consultadas, a pesar de todos los esfuerzos, no se pudo identificar ni un solo estudio que investigara sobre el desarrollo profesional del maestro de matemáticas del cuarto al sexto grado en el contexto de la educación puertorriqueña. Uno que aborda aspectos relacionados es el de Álvarez Matos (2012), que investigó acerca de las creencias epistemológicas y didácticas de maestros del nivel intermedio en la implementación del currículo basado en estándares. Cabe señalar, que la mayoría de los estudios que se identificaron investigaban el nivel intermedio (middle schools) en escuelas en Estados Unidos. En Puerto Rico el nivel intermedio comprende los grados del séptimo al noveno grado, muy diferente al de Estados Unidos que puede incluir estudiantes entre las edades de 10 a 15 años (USDE, 2011). Por tal razón, es importante destacar en qué forma los programas de capacitación en matemáticas en el contexto de la educación puertorriqueña están generando el cambio en el maestro, que es necesario para alcanzar las metas académicas que proponen los estándares de contenido y expectativas de grado para el estudiante de cuarto, quinto y sexto grado. A pesar de los esfuerzos exhaustivos que se realizaron durante la revisión de la literatura no se identificaron estudios sobre este tema en Puerto Rico.

Preguntas de investigación

1. ¿Cómo describe un grupo de maestros sus experiencias de formación al participar de un programa de capacitación profesional?
2. ¿Cómo el andamiaje del programa MSP provee para la adquisición del contenido matemático en el maestro participante y para la transmisión de los procesos de enseñanza?

3. ¿Cómo el maestro demuestra que se apodera de los nuevos conocimientos para la enseñanza de las matemáticas al participar del programa de capacitación profesional?

4. ¿En qué forma las prácticas de enseñanza de los maestros están alineadas a los conocimientos adquiridos en el programa de desarrollo profesional?

5. ¿Cómo la gestión del maestro ha impactado el mejoramiento académico del estudiante?

Aportación del estudio

El diseño cualitativo de estudio de caso permitió examinar en qué forma el maestro del nivel elemental de matemáticas con experiencia adquiere los nuevos aprendizajes para la enseñanza de las matemáticas luego de participar de programas de desarrollo profesional. El enfoque en esta investigación fue un programa de capacitación específico (MSP) cuyo diseño contiene los elementos de programas efectivos identificados en la literatura, y que promueve el conocimiento de contenido y pedagógico en matemáticas. Sus resultados informarán a los desarrolladores de la capacitación y al DEPR sobre aquellos elementos del modelo que posibilitan el aprendizaje del maestro y la implantación en la sala de clases. Significa, entonces que este estudio hará aportaciones al conocimiento sobre el desarrollo profesional que promueve cambios en el maestro de matemáticas, sobre el desarrollo profesional que promueve el DEPR y contribuye al mejoramiento del aprendizaje de los estudiantes. Es importante entender el proceso de cambio del maestro que participa de un programa de desarrollo profesional, de tal modo que el DEPR pueda tomar decisiones bien informadas en cuanto al rol que la educación del
maestro en servicio tiene para lograr las metas académicas del programa de matemáticas. Se espera que la información que arrojó el estudio pueda dar luz al cómo, el cuándo, en qué forma y por qué las prácticas del maestro cambian. Los hallazgos identificados pueden dar luz para implantar nuevos modelos de desarrollo profesional en el DEPR que aporten al aprendizaje continuo y permanente del maestro con experiencia del nivel elemental. Estos hallazgos pueden formar parte de nuevos enfoques de desarrollo profesional que se establezcan en las convocatorias con los proveedores de los servicios profesionales educativos.

Los resultados que se obtuvieron de esta investigación añadirán valor al conocimiento teórico que se tiene sobre los programas de capacitación efectivos para maestros. Ese valor teórico incluye nuevos conocimientos sobre el diseño de programas para maestros que enseñan materias para las cuales no están especializados y las consideraciones a tomar en cuenta durante el proceso de planeación e implantación del mismo. Se fortalece el conocimiento acerca de la capacitación diferenciada para el maestro en servicio; aquella que enfoca en el maestro que se preparó y especializó en la materia que enseña, y la que construye nuevos aprendizajes en el maestro que enseña con el conocimiento general de la materia.

Guskey (2002) señala que las tres metas más relevantes de los programas de desarrollo profesional son el cambio en prácticas educativas, en las actitudes y creencias del maestro, y el cambio en los resultados de aprendizaje de los estudiantes. Hay programas de desarrollo profesional que postulan que el cambio en actitudes y creencias debe lograrse antes de implantar las nuevas prácticas educativas y de observar los cambios en el aprendizaje de los estudiantes. En cambio, el modelo de cambio propuesto por Guskey establece que para lograr el cambio del maestro en sus creencias y actitudes tiene que convencerse de que la estrategia implantada funciona porque observó que hubo cambio positivo en el estudiante. Los hallazgos que se
reflejaron en esta investigación aportarán a la controversia en relación a la secuencia, a los factores a considerar y a los elementos que deben seguir los modelos de desarrollo profesional para que aporten al cambio permanente y continuo en el maestro.

En la educación hay controversias relacionadas con la preparación del maestro de matemáticas del nivel elemental del nivel cuarto al sexto (O’Brien, 2010; Swabey, Castleton & Penney, 2010; Vales Medina, 2007). En este nivel hay programas que enfatizan la educación general y otros la especialidad por materia. O’Brien (2010) la manifiesta cuando dice que “la preocupación de los programas multidisciplinarios es que su amplitud afecta adversamente la profundidad del contenido aprendido”. (p. 36). Se puede apreciar esta controversia al observar las diferencias de los requisitos en matemáticas que los programas de preparación de maestros en Puerto Rico en el nivel de cuarto al sexto grado requieren para otorgar el diploma de graduación. Unos requieren tres créditos (Universidad del Turabo, 2010), otros 6 (Universidad Interamericana, 2008), otros nueve (Universidad Metropolitana, 2010), y otros como la Universidad de Puerto Rico en Rio Piedras (2010), han especializado el nivel por áreas requiriendo 12 créditos para graduarse de maestro de nivel elemental con énfasis en las matemáticas. Esta investigación aportará al conocimiento del desarrollo profesional continuo del maestro con experiencia del nivel elemental de cuarto al sexto grado como una alternativa a lidiar con la controversia.

Definición de términos

Nivel educativo del cuarto al sexto grado - La educación elemental en el Departamento de Educación de Puerto Rico se organiza en dos niveles. El nivel de cuarto al sexto grado corresponde al segundo nivel de la educación elemental que comprende del Kindergarten al sexto grado (Departamento de Educación de Puerto Rico, 2014a)
Programa *Mathematics and Science Partnership* - Es una iniciativa del Departamento de Educación de los Estados Unidos que asigna fondos para crear alianzas entre a las agencias educativas locales, en nuestro caso, el DEPR, y las instituciones de educación superior. Dichas alianzas desarrollan programas que promueven el mejoramiento del conocimiento de contenido de los maestros y de las destrezas de enseñanza, así como la ejecución de los estudiantes en las áreas de matemáticas y ciencias (US Department of Education, 2011a).
CAPÍTULO II
REVISIÓN DE LITERATURA

Esta investigación utilizó el método cualitativo de estudio de caso para describir, analizar e interpretar las experiencias de seis maestras de matemáticas del nivel de cuarto al sexto grado que participaron de una iniciativa de desarrollo profesional. El estudio se llevó a cabo con el propósito de identificar las aportaciones que hace este programa para que el maestro desarrolle el conocimiento de contenido para la enseñanza de las matemáticas. Se contempla entender en qué forma el desarrollo profesional promueve el desarrollo de las capacidades y destrezas del maestro que enseña matemáticas en el contexto de la reforma de matemáticas basada en estándares que promueve la ley NCLB.

La revisión de la literatura es esencial para identificar un marco de información que sirva de referencia para el diseño de los instrumentos de recolección de datos, el análisis e interpretación de los hallazgos y las respuestas a las preguntas de investigación. Los temas se discutieron en tres grandes grupos que incluyeron el marco histórico, el marco conceptual y el marco metodológico. En el marco histórico se examinó información sobre las reformas educativas en Estados Unidos y en Puerto Rico durante la segunda mitad del siglo 20. En el marco conceptual se provee información sobre los elementos de calidad de los programas de desarrollo profesional, la enseñanza de matemáticas en la reforma basada en estándares, el cambio del maestro y el avalúo auténtico. En el marco metodológico se discutieron investigaciones que utilizaron el diseño cualitativo de estudio de caso, otras que utilizaron el cuantitativo o métodos mixtos, que exploraron los elementos de calidad de programas de desarrollo profesional y del cambio del maestro, y de la enseñanza de las matemáticas.
Marco histórico

Los principios que fundamentan las diferentes teorías psicológicas del aprendizaje han impulsado cambios en cuanto a la enseñanza de las matemáticas (Lambdin & Walcott, 2007). Estos cambios describen los enfoques que se utilizan para la enseñanza de los temas y conceptos, y el ambiente que debe prevalecer en un salón durante el proceso enseñanza y aprendizaje. Lambdin y Walcott (2007) clasifican en seis fases los cambios en los enfoques de la enseñanza de las matemáticas, que surgieron en el siglo 20. Estos autores plantearon que a través del siglo 20 la enseñanza de las matemáticas ha pasado por seis etapas constituidas de acuerdo al énfasis en el enfoque: (a) ejercicio y la práctica, (b) la aritmética significativa, (c) la nueva matemática, (d) de vuelta a lo básico, (e) la resolución de problemas y (f) la era de los estándares, el avalúo y el accountability.

Ejercicio y práctica. La fase conocida como ejercicio y práctica cubre aproximadamente los años desde el 1920 al 1930. Los trabajos de Edward Thorndike sobre la teoría del conexionismo, sostienen los fundamentos para la enseñanza a base de ejercicios y prácticas (Woolfolk, 2005). Esta teoría reclama que el aprendizaje es una relación entre el estímulo y la respuesta. Sus principios establecen que se obtiene aprendizaje en la medida que haya un evento en el ambiente que provoque una reacción a dicho evento. En el enfoque de ejercicios y práctica predominan los cómputos y el procedimiento. Se le da importancia a la memorización de datos y a los algoritmos. El currículo se segmenta en muchos pedazos.

Aritmética significativa. La fase de aritmética significativa se extiende alrededor de los años 1930 a 1950. A consecuencia de la gran depresión, y el movimiento de educación progresiva, el énfasis viene a ser el aprendizaje para la vida. En esta fase se combinaron tanto
ideas progresivas del aprendizaje activo como las de la psicología de la Gestalt. El foco de la enseñanza fue el desarrollo de los conceptos de las matemáticas en una forma significativa.

El término significativa fue interpretado en formas diferentes por los educadores en la era de la educación progresiva. Para algunos significaba el aprendizaje para la utilidad social, con el propósito de que el estudiante adquiriera herramientas que le ayudaran a tratar con los problemas que más tarde se iba a encontrar durante su vida. Estos educadores recomendaron un enfoque orientado a la actividad. Muchos creían que los estudiantes podían aprender matemáticas a través de experiencias accidentales más que sistemáticas.

Otros educadores debatieron el significado que se le estaba dando al concepto significativo y lo definieron como el entendimiento de ideas, principios y procedimientos. Las relaciones matemáticas constituyen el énfasis en la fase de matemáticas significativas. Un ejemplo de estas relaciones se observa cuando se enseña la resta de números relacionándola con el contenido aprendido durante la suma.

La introducción de la teoría de Gestalt, que propone que se puede formular la solución de un problema en la medida que se perciba la relación de una parte de una situación con toda la situación, fue un factor que incitó el punto de vista de la matemática significativa como sistema de ideas, principios y procedimientos. Desde esta perspectiva teórica se consideran todos los elementos del problema al comenzar a solucionar el mismo. La enseñanza se caracterizó por la actividad basada en el descubrimiento donde el “estudiante observaba las conexiones matemáticas entre las destrezas discretas y conceptos que estos estaban aprendiendo” (Lambdin & Walcott, 2007, p. 10).

Nueva matemática. Tanto las críticas de educadores al final la Segunda Guerra Mundial como el lanzamiento del satélite Sputnik en 1957, introdujeron la fase conocida como la Nueva
matemática (*New Math*). Para los críticos de esa época, la educación no estaba preparando a los estudiantes en los conceptos de matemáticas y ciencias, necesarios para que se integraran efectivamente a las demandas tecnológicas requeridas para la fuerza de trabajadores. Esto ocasionó que educadores, matemáticos y psicólogos colaboraran en la reestructuración de la enseñanza de las matemáticas en todos los niveles. Para algunos mejorar la enseñanza requería el conocimiento fundamental de las estructuras de la disciplina. Por tal razón, se establecieron nuevos currículos y textos de matemáticas. Estos currículos enfatizaron explicaciones coherentes y lógicas para los procedimientos que se enseñaban en el aula de matemáticas (Klein, 2003).

Aunque este movimiento no recayó específicamente en una teoría (Lambdin & Walcott, 2007), los trabajos del psicólogo Jerome Bruner sobre el currículo en espiral y el aprendizaje por descubrimiento guaron los esfuerzos de la Nueva matemática. En el nivel elemental se incorporaron nuevos temas en el currículo. Se añadieron lecciones sobre conjuntos, sistemas de números, geometría intuitiva y teoría de números. Estos nuevos temas se relacionaban con los contenidos familiares a través del diseño del currículo en espiral.

Klein (2003) manifestó que en el currículo se enfatizó tanto en la abstracción de las matemáticas que se llegó al punto de lo absurdo. Señala además, que muchos maestros no estaban bien preparados para responder a las demandas del currículo adoptado por la Nueva Matemática. Esto provocó críticas y desacuerdos.

Este movimiento de la Nueva matemática trajo preocupaciones a padres, maestros y políticos en cuanto a la utilidad del aprendizaje en las actividades de la vida diaria y en el lugar del trabajo. Debido a las dudas sobre la efectividad del movimiento, para el 1970 hubo rechazo a
los nuevos materiales curriculares y se retornó a la enseñanza basada en datos y práctica repetitiva.

De vuelta a lo básico. La enseñanza de datos, práctica repetitiva y énfasis en procedimientos y memorización se conoce como la fase “de vuelta a lo básico”. Se vuelve a la enseñanza tradicional con un enfoque en el contenido básico, fundamentada en las teorías del conexionismo. Para los años de 1980 muchos educadores entendían que la enseñanza con enfoques en datos y práctica repetitiva no preparaba adecuadamente a los estudiantes para sus vidas futuras ni para su futuro vocacional o profesional.

Solución de problemas. El interés en desarrollar una fuerza de trabajadores preparados que apoyaran la competitividad internacional de la nación tanto en las finanzas como en el comercio promueve la fase de solución de problemas. El énfasis en la solución de problemas es apoyado por el documento Una agenda para la acción publicado por el NCTM (1980). En este documento se recomendó la solución de problemas como el foco de la enseñanza de matemáticas, y nuevas formas de enseñanza. Además se propuso, el acceso a calculadoras en el nivel elemental y secundario, la disminución en la práctica del uso de lápiz y papel, se fomentó el uso de manipulativos para demostrar y desarrollar el concepto o destreza y el uso de variadas medidas de evaluación más allá que la prueba convencional.

Los trabajos de Piaget y Vygotsky fundamentaron la fase de la solución de problemas que vino acompañada por la estrategia de aprendizaje cooperativo y los principios del constructivismo. A través de la solución de problemas el maestro desarrolla ambientes para crear conflictos cognitivos que reestructuren el pensamiento del estudiante. El estudiante tiene la oportunidad de inventar sus propios métodos para solucionar un problema.
Estándares, avalúo y accountability. El documento *A Nation at Risk*, publicado en el 1983, se considera la fuerza que precipita la fase de los estándares y el *accountability* (Moon, Brighton, Jarvis & Hall, 2007). Este documento llama a reformar de la educación para aumentar la ejecución del estudiante y de la escuela, y añade que el sistema educativo está fallando en preparar adecuadamente al estudiante para integrarse a la fuerza trabajadora y a la competitividad de la nación. Luego, la NCTM publica en el 1989 el documento *Curriculum and Evaluation Standards for School Mathematics* con el cual se inicia esta fase (Lambdin & Walcott, 2007). Este documento establece estándares para los niveles educativos del K al 4, 5 al 8 y 9 al 12. Estos estándares requieren mayor atención al significado y sentido de las operaciones, a las operaciones mentales, a la colección y organización de datos, al uso de la calculadora, al reconocimiento y descripción de patrones, al uso de materiales manipulativos y al trabajo cooperativo en el nivel de Kinder al cuarto grado (Klein, 1993).

En el 1991 y 1995 la NCTM publica dos documentos adicionales titulados *Professional Standards for Teaching Mathematics* y *Assessments Standards for School Mathematics* respectivamente. Todos estos documentos se consolidaron en el publicado en el 2000 conocido como *Principles and Standards for School Mathematics* (NCTM, 2000). Weiss (1994) establece que estos documentos promueven cambios en la educación de matemáticas, de un currículo que se basa en cómputos y memorización de datos a uno orientado al concepto. Se promueve la exploración, la conjetura, el análisis y la aplicación de matemáticas tanto en los contextos matemáticos como en los del mundo real. Los estándares de la NCTM enfocan en el entendimiento del concepto, las destrezas que el estudiante debe dominar y cómo estos aprenden. Los estándares reflejan la influencia de los principios teóricos del constructivismo y de la teoría sociocultural del aprendizaje.
La NSF ha sido clave en la implantación de los estándares promovidos por la NCTM (Klein, 2003). Ésta iniciativa se inició en el 1991. Parte de los fondos que provee la NSF son para que las agencias educativas alineen sus estándares académicos con los de la NCTM. El resultado ha sido una uniformidad y adherencia de los estándares de los estados a los de la NCTM (Klein, 2003).

La era de los estándares viene acompañada por el accountability. Para la década del 1990 en Estados Unidos se estableció el avalúo nacional obligatorio en los grados 4, 8 y 12, debido a la insatisfacción que había con la educación y especialmente con la ejecución de los estudiantes en matemáticas. En la administración del Presidente Clinton se hizo un llamado al establecimiento de estándares y pruebas nacionales en lectura y matemáticas en el cuarto y octavo grado. En el 2001 se establece la ley NCLB que le requiere a las escuelas que reciben fondos federales demostrar progreso anual adecuado y lograr que para el año 2014 el 100% de los estudiantes sean proficientes tomando en cuenta los requisitos mínimos establecidos por el estado. Hasta el día de hoy tanto los estándares como el accountability son la base que guían el contenido curricular de las materias y evidencian el progreso académico alcanzado por el estudiante.

Plan de flexibilidad. El sistema de accountability que promueve la ley NCLB clasifica a las escuelas que no alcanza en rendimiento académico en plan de mejoramiento. En septiembre de 2011, el Departamento de Educación de los Estados Unidos le da la oportunidad a los estados de solicitar una dispensa para flexibilizar algunos aspectos de la ley de Educación Elemental y Secundaria (ESEA) de 1965, enmendada por la ley NCLB (DEPR, 2014). Como respuesta, en el 2011 la administración del Presidente Obama lanzó una invitación a los estados y territorios a solicitar dispensas a la ley ESEA que les permitiera reformular sus estrategias de reforma.
La flexibilidad responde a cuatro principios: (a) expectativas postsecundarias y profesionales para todos los estudiantes, (b) sistema diferenciado de reconocimiento, rendición de cuentas y apoyo, (c) apoyo a la instrucción y el liderato efectivo y (d) reducción de la duplicación y la carga innecesaria.

El DEPR sometió el Plan de flexibilidad que fue aprobado para octubre del 2013 (DEPR, 2014). En el mismo se identificaron las acciones que tomará el DEPR para cumplir con los cuatro principios de flexibilidad. Para garantizar las altas expectativas de aprovechamiento para todos los estudiantes el DEPR aprobará y adoptará estándares postsecundarios y profesionales rigurosos en las materias de español y matemáticas en los grados de K al 12, de tal modo que los estudiantes estén listos para la universidad y las carreras profesionales. Los nuevos estándares tendrán un acercamiento a los Common Core State Standards (CCSS). Entre los nuevos esfuerzos se propuso el desarrollo de pruebas formativas para las materias y grados que no se examinan.

El DEPR garantizará el principio de rendición de cuentas y apoyo estableciendo nuevos y más rigurosos objetivos anuales medibles, y una nueva clasificación que incluye las escuelas de prioridad, las escuelas en progreso, las de enfoque y las de excelencia. Se establecerán apoyos diferenciados para las escuelas en cada una de las categorías antes señaladas. El 5% de las escuelas con el dominio académico más bajo en la Pruebas Puertorriqueñas de Aprovechamiento Académico (PPAA) y las Pruebas Puertorriqueñas de Educación Alterna (PPEA) según los resultados en los grados 3, 8 y 11 se clasificarán en prioridad. Asimismo se clasifican las escuelas superiores con un índice de graduación menor de 60%. El 10% de las escuelas que han mostrado la brecha más amplia entre subgrupos a base del aprovechamiento académico y la tasa de graduación serán clasificadas en progreso. El 75% de las escuelas serán clasificadas en
enfoque. Estas escuelas aunque requieren mejorar, han demostrado progreso en su funcionamiento y en el aprovechamiento académico de los estudiantes. El 10% de las escuelas que tienen el índice de desempeño más alto y al menos un 95% en el índice de asistencia se clasificarán en excelencia. También se incluirán las escuelas que tienen el porcentaje más alto de estudiantes cumpliendo o excediendo sus expectativas de crecimiento y las escuelas superiores que muestren el mayor progreso en aumentar su tasa de graduación.

Para atender el principio de Apoyo a la Instrucción y el Liderato Efectivo el plan contempla un sistema de evaluación de educadores para mejorar la efectividad del maestro y el director y fortalecer el proceso de enseñanza y aprendizaje. La evaluación del maestro incluye los siguientes indicadores: (a) currículo, (b) planificación del aprendizaje, (c) estrategias magnas reformadoras, (d) proceso de aprendizaje y aprovechamiento académico del estudiante, (e) organización de la sala de clases, (f) desarrollo profesional y (g) tareas y responsabilidades. El liderazgo educativo, el desempeño organizacional y ético, y el liderazgo administrativo son los indicadores que se incluyen para la evaluación del director de escuelas.

Con el propósito de cumplir con el principio de Reducción de la Duplicación y la Carga Innecesaria el DEPR creará un grupo de trabajo para la reducción de carga administrativa. Este grupo tiene en sus encomiendas hacer recomendaciones para reducir la duplicación de esfuerzos y las cargas innecesarias en los distritos y las escuelas. Se creará además un sistema longitudinal de datos del sistema educativo y se fomentará la colaboración y autonomía de los distritos escolares.

Reforma de matemáticas basada en estándares. Las disposiciones de la ley NCLB (USDE, 2010) se establecen con el propósito de proveer una educación de calidad a todo estudiante del sistema educativo público. Ésta enfatiza la responsabilidad institucional. Entre
sus disposiciones se compromete a cada escuela, distrito escolar y agencia educativa por la productividad de sus estudiantes. Cada escuela es responsable de identificar sus necesidades y prioridades y trabajar sobre ellas para que los estudiantes alcancen las metas que se establezcan en la agencia educativa estatal. Además, dispone que las estrategias de enseñanza implantadas en las escuelas tengan que ser probadas como efectivas mediante la investigación científica.

Esta ley provee fondos para el mejoramiento de las escuelas y establece unos requerimientos para recibir los mismos. Las escuelas tienen que fijar altos estándares académicos en cada área de contenido acerca de lo que el estudiante debe aprender y desempeñar. Además, las responsabiliza de crear un sistema de *accountability* a través de la administración de pruebas de aprovechamiento alineadas a los estándares definidos en la materia. La ley establece que lograr el alto rendimiento académico del estudiante requiere una alineación entre el avalúo académico, el *accountability*, la preparación y formación de los maestros, el currículo y los materiales de enseñanza, con los a estándares académicos que se hayan establecido.

En respuesta a estas disposiciones el DEPR instauró los Estándares de Contenido y Expectativas de Grado (DEPR, 2007) de los diferentes programas académicos, incluyendo el del programa de matemáticas, en el año 2007. Los estándares de contenido son los indicadores que identifican los fundamentos esenciales del programa de matemáticas para implantar una educación de calidad desde el Kindergarten hasta el duodécimo grado. Las expectativas de grado identifican los aspectos específicos del contenido, destrezas y actitudes de cada estándar, que el estudiante debe poseer como resultado de las prácticas de enseñanza.

Además de los documentos de Estándares de Contenido y Expectativas de grado del DEPR, la Carta Circular número 11-2013-2014 del programa de matemáticas, y los documentos
Los principios y estándares de las matemáticas escolares (NCTM, 2000) y los Puntos focales (NCTM, 2007) diseminados por el *National Councill of Teachers of Mathematics* (NCTM) dirigen los esfuerzos de la reforma de matemáticas basada en estándares. Estos documentos, fomentan la reforma de matemáticas basada en los estándares, la cual promueve una enseñanza activa a base de discusiones matemáticas y de desarrollo de conceptos, y que provee oportunidades al estudiante para que construya su pensamiento en forma crítica (Bray, 2011).

Esta reforma enfatiza que la práctica educativa de las matemáticas se caracterice por la solución de problemas, la comunicación y el razonamiento matemático, la representación y la integración de los temas transversales del currículo (DEPR, 2007).

El documento de reforma del 2007 está constituida por cinco estándares que comprenden las áreas de numeración y operaciones, álgebra, medición, geometría y análisis de datos y probabilidad. Aunque se especifican los contenidos por área se promueve la enseñanza de las matemáticas en forma interconectada. En cada uno de los estándares se deben hacer conexiones con el contenido de otros estándares.

Los diseñadores del documento de Estándares de contenido y expectativas de grado del 2007 tenían en mente “promover el cambio en nuestro sistema educativo” (DEPR, 2007, p. 12), alineando esos “cambios curriculares con el desarrollo profesional de los maestros, los métodos de instrucción y la evaluación del aprendizaje del estudiante” p.12). Los cambios suponen nuevas formas de enseñanza y un nuevo rol de maestro. La ley NCLB y el DEPR han asignado recursos financieros para mejorar la enseñanza en la sala de clases a través de fondos de los programas de Título I y Título II. Los mismos se utilizan para programas de desarrollo profesional que equipen al maestro con esas herramientas necesarias para implantar los estándares. Con la implantación de desarrollo profesional se asume que se mejora la práctica del
maestro y como consecuencia el aprendizaje del estudiante. Es pertinente discutir en las próximas páginas los temas de la enseñanza de las matemáticas basada en la reforma de estándares, el desarrollo profesional, el cambio del maestro y el avalúo ya que los mismos dan luz a esta investigación.

El programa de matemáticas del sistema de educación pública en Puerto Rico se ha regido por lo establecido en este documento hasta el año escolar 2013. Sin embargo, para el año escolar 2014-2015 el DEPR introducirá nuevos estándares de contenido en las materias de español, inglés, matemáticas y ciencias (Departamento de Educación de Puerto Rico, 2014c, 2014b, 2014d, 2014e). En el diseño de los nuevos estándares de matemáticas “se consideró el de los Common Core State Standards for Mathematics (CCSS)” (DEPR, 2013). Los CCSS son una iniciativa de educadores en Estados Unidos que comienza en el 2009, con el propósito de hacer más uniforme los estándares académicos entre los estados para garantizar que todos los estudiantes de la nación tengan acceso a los mismos altos contenidos académicos. Estos estándares definen los conocimientos y destrezas que deben adquirir los estudiantes en lenguaje y matemáticas desde el Kindergarten hasta el duodécimo grado, de tal modo que al completar su escuela superior estén preparados para ser exitosos en estudios post secundarios y en la fuerza laboral. Los mismos están programados para entrar en vigencia en el año 2014 y los estados los adoptan en forma voluntaria.

Puerto Rico no ha adoptado los mismos (National Governors Association Center for Best Practices and the Council of Chief State School Officers, 20013; DEPR, 2014e), pero sí ha llevado a cabo un proceso de revisión curricular para establecer la correspondencia entre los estándares y expectativas del documento del 2007 y los Common Core State Standards del 2010 (DEPR, 2013b). El nuevo documento publicado en julio de 2014 y que comienza a implantarse

Al igual que en el 2007 el documento del 2014 establece cinco estándares en las áreas de numeración y operación, algebra, geometría, medición y análisis de datos y probabilidad, para los grados del Kindergarten al sexto. Se establece en estos nuevos estándares que la estrategia de enseñanza contextualizada con enfoque en la solución de problemas guiará las prácticas educativas en la sala de clases. Los Puerto Rico Core Standards se establecen para desarrollar un currículo de alto rigor donde se integran los conocimientos del saber, saber hacer, saber ser y saber convivir (DEPR, 2014g). La implantación de los mismos persigue que el maestro utilice diferentes metodologías y estrategias que atiendan a la diversidad de estudiantes durante las experiencias en la sala de clases para que estos puedan establecer metas a corto y a largo plazo, y puedan integrarse efectivamente al mundo de trabajo y a los estudios universitarios.

El nuevo documento Estándares de Contenido y Expectativas de Grado de Puerto Rico \textit{(Puerto Rico Core Standards)} está anclado en el diseño de unidades curriculares con el modelo \textit{Understanding By Design}. Los elementos que comprenden este modelo se utilizaron en el diseño de los mapas curriculares, los cuales son herramientas de trabajo del maestro que alinean el estándar, con los resultados esperados, el avalúo y las actividades en la sala de clases (DEPR, 2014h). Los mapas evidencian el rigor al establecer objetivos de transferencia y adquisición y las tareas de desempeño que el estudiante debe alcanzar una vez finalizada la unidad de estudio.

\textbf{Marco conceptual}

\textbf{Enseñanza de las matemáticas}. Tanto el documento de Los principios y estándares de las matemáticas escolares (NCTM, 2000) y los Puntos focales (NCTM, 2007) son utilizados
como referencia para establecer los estándares de contenido del programa de matemáticas del DEPR (2003, 2013). Ambos documentos invitan a repensar las metas de las matemáticas para el aprendizaje de los estudiantes, el rol del maestro para que el estudiante alcance dichas metas y los métodos de avalúo que examinan el progreso de las prácticas que se utilizan para alcanzar las metas que se han trazado para los estudiantes.

Los esfuerzos de la reforma basada en estándares le han otorgado una mayor responsabilidad al maestro, y le han requerido que utilice en sus clases nuevo contenido y desarrolle sus clases enfatizando la solución de problemas y el razonamiento, la comunicación en matemáticas, las conexiones entre áreas de contenido, la integración de la tecnología, el uso de manipulativos y el trabajo en grupo (Senger, 1999). Además, le requiere que enfátice en la aplicación de los conceptos a través de situaciones de vida real, y menos en memoria y procedimientos que guíen el cómputo.

Según Ottmar et al. (2013), implantar efectivamente los estándares requiere la creación y fortalecimiento de ambientes de aprendizaje que faciliten la interacción entre las tareas de matemáticas que selecciona el maestro, la utilización del conocimiento de las matemáticas y la discusión de las matemáticas en la sala de clases. Además, consideran que la organización adecuada de las interacciones sociales entre maestros y estudiantes y entre los estudiantes contribuye a la formación de ambientes de enseñanza efectivos para el aprendizaje.

En la rúbrica titulada Instructional Quality Lesson Observations (IQA) que utilizó Boston (2012) en una investigación, se establecen unos criterios para identificar ambientes efectivos de la enseñanza de las matemáticas. Dicha rúbrica se diseñó para evaluar la calidad de las lecciones que implanta el maestro durante las observaciones de las clases. Su diseño consiste de cuatro indicadores que definen una enseñanza efectiva en matemáticas: (a) tarea de enseñanza cognitiva
de reto, (b) implantación de la tarea u oportunidades para que el estudiante se involucre en altos niveles del pensamiento y razonamiento a través de los episodios de la enseñanza, (c) oportunidades para que el estudiante explique su pensamiento y razonamiento matemático a través de discusiones o de respuestas escritas y (d) las expectativas del maestro para el aprendizaje del estudiante.

Tarea para la enseñanza. La tarea de enseñanza es un problema o conjunto de problemas de matemáticas que el maestro selecciona para dirigir la enseñanza de una idea o un concepto (Boston, 2012; Lappan y Ferrini-Mundy, 1993). La misma constituye lo que el estudiante hace durante la mayoría del tiempo a través de la lección de enseñanza. Además, posibilita que el estudiante se involucre en los conceptos y procesos durante la lección de la clase. El tipo de tarea que utiliza el maestro crea oportunidades para el aprendizaje del estudiante. La selección de esta depende de la expectativa de aprendizaje que se tiene para el estudiante.

La tarea sitúa la demanda cognitiva. Boston (2012) sostiene que las tareas de memorización de datos o cómputos con procedimientos, demandan bajos niveles cognitivos de razonamiento, lo que probablemente ocasionará que el estudiante desarrolle fácilmente destrezas de cómputos y de datos. Sin embargo, especifica que si la tarea demanda pensamiento, razonamiento y hacer sentido de las ideas de las matemáticas, probablemente puedan construir una amplia comprensión de las matemáticas. Una tarea para el entendimiento plantea problemas para que el estudiante los resuelva, permite espacio para que el estudiante explore las matemáticas y construya soluciones basadas en el aprendizaje previo, y provee oportunidades para que el estudiante comunique y reflexione sobre su pensamiento (Van ES & Conroy, 2009).
Para seleccionar la tarea de enseñanza hay que tener en cuenta el contenido, a los estudiantes y las formas en las cuales estos aprenden las matemáticas (Lappan & Ferrini-Mundy, 1993). Durante la selección del contenido de la tarea, el maestro debe juzgar cuán bien esta representa el concepto y los procedimientos que va a enseñar, hasta dónde la misma representa lo que se supone se haga en matemáticas y si es compatible con el desarrollo de las habilidades que persigue. La tarea debe estar conectada al aprendizaje previo y a lo que el maestro quiere que el estudiante aprenda. Al seleccionarla, el maestro debe estar al tanto de lo que el estudiante conoce, lo que puede hacer, en lo que necesita trabajar, y el nivel de reto que este parece estar listo para aceptar. La tarea puede proveer al maestro mayor comprensión del pensamiento del estudiante y de cómo este puede aprender. Por tal razón, al seleccionarla debe hacer un pareo entre la tarea y en cómo el estudiante puede desarrollar un mayor conocimiento de las matemáticas.

La rúbrica IQA (Boston, 2012) establece cuatro niveles que corresponden al potencial de la tarea para involucrar al estudiante en altos niveles cognitivos. En el nivel cuatro, que corresponde al nivel más alto donde se involucra al estudiante en razonamiento riguroso, se describen dos amplios indicadores. El primero establece el potencial para involucrar al estudiante en la exploración y entendimiento de la naturaleza de los conceptos de las matemáticas, los procedimientos y sus relaciones. Ese potencial provee para que el estudiante use pensamiento complejo sin usar el algoritmo, y desarrolle procedimientos con conexiones. El segundo establece el potencial para evidenciar el razonamiento y entendimiento del estudiante. Este potencial se evidencia en la medida en que se resuelvan problemas de reto, se desarrollen explicaciones para las fórmulas y los procedimientos, se identifican patrones y establecen generalizaciones basadas en dichos patrones, se hacen conjeturas, se desarrollen conexiones
explícitas entre representaciones, estrategias, conceptos y procedimientos, y se utilicen los procedimientos para explicar e ilustrar un concepto de matemáticas, proceso o relación.

Implantación de la tarea. La implantación de la tarea es el aspecto más significativo en el aprendizaje (Boston, 2012). En esta fase de la lección de clases el maestro implanta la tarea para el desarrollo cognitivo del estudiante. Las altas demandas cognitivas deben sostenerse a través de toda la lección. El maestro puede mantener las oportunidades de altos niveles de pensamiento y razonamiento a través de las preguntas, fomentando conexiones conceptuales y requiriendo que los estudiantes fundamenten matemáticamente sus explicaciones. Un ejemplo de una tarea que requiere altos niveles de pensamiento (Boston, 2012) para la escuela intermedia (middle) es la siguiente:

Yo necesito comprar algunos jarrones de salsas para la fiesta del *Super Bowl*. En la tienda *Compre un Montón*, puedo comprar 6 jarras por $5.00. En la tienda *Súper Comidas*, la puedo comprar por $4.50. ¿Cuál es la mejor compra? Utilice dos estrategias y justifique su respuesta” (p.83).

Esta tarea está clasificada en el nivel cuatro de razonamiento en una escala de razonamiento del uno al cuatro tal y como se definió en la rúbrica IQA.

Discusiones matemáticas. Las discusiones matemáticas incluyen las formas en que los maestros y los estudiantes se involucran en el pensamiento, las conversaciones, los acuerdos y los desacuerdos para lograr dar sentido a las matemáticas (NCTM, 1991). A través de las mismas, se identifican reglas y se sostienen argumentos para promover que los conceptos, relaciones y procedimientos de las matemáticas aumenten el conocimiento del grupo de estudiantes. El maestro tiene un rol decisivo en lograr ambientes de aprendizaje que promuevan discusiones donde los estudiantes perfeccionen sus destrezas de pensamiento y razonamiento
Es imprescindible que ayude al estudiante a participar y valorar sus contribuciones para que se lleven a cabo las discusiones matemáticas. El empleo de conjeturas, de problemas para iniciar la lección, la crítica y el perfeccionamiento de argumentos, y la justificación de las idea, deben permean en el salón de clases. Los estudiantes necesitan herramientas para investigar las matemáticas y sus aplicaciones. Las estrategias para la enseñanza, las formas de promover el pensamiento, el modelaje del maestro, las representaciones y los artefactos, tales como los manipulativos, las computadoras y calculadoras, deben formar parte del conglomerado de herramientas para desarrollar las discusiones en las matemáticas (Lappan & Ferrini-Mundy, 1993).

Las discusiones (discurso) de matemáticas luego de que el estudiante haya trabajado una tarea sirven para crear oportunidades de altos niveles de razonamiento (Boston, 2012). Si las mismas involucran a todo el grupo le proveen la oportunidad al maestro para desarrollar el entendimiento de todos los estudiantes. Cuando las mismas se enfocan en el trabajo de los estudiantes, aportan para que en forma colectiva puedan analizar, comparar, contrastar conectar y reflexionar sobre los productos obtenidos al completar la tarea. El discurso reflexivo que se construye es esencial para el aprendizaje de las matemáticas con entendimiento y es un indicador de la calidad de la enseñanza (Boston, 2012). El maestro puede fortalecer el aprendizaje a través de la formulación de preguntas adecuadas que promuevan la discusión y reflexión.

Expectativas del maestro. La percepción que tiene el maestro acerca del tipo de oportunidades de aprendizaje que son posibles con cierto grupo de estudiantes y de las tareas de enseñanza que diseña establece parámetros acerca de lo que espera de sus estudiantes. Las expectativas dan forma al proceso de enseñanza y aprendizaje que implanta el maestro. De acuerdo a Schoenfeld (2002), la visualización del maestro sobre las expectativas de lo que
ocurrirá en el salón de clases, le da un gran peso al diseño de las actividades que van a desarrollar durante la lección de enseñanza. Por tal razón, influyen en las oportunidades que crea para que el estudiante aprenda matemáticas.

Enseñanza de las matemáticas en el nivel de cuarto al sexto grado. La descripción de este tema está amparada en el documento de Estándares de contenido y expectativas de grado del programa de matemáticas del 2007. El programa de matemáticas del DEPR está diseñado a base de cinco estándares de contenido y las expectativas de grado correspondientes que identifican los aprendizajes que cada estudiante debe alcanzar desde el Kindergarten hasta el duodécimo grado. El currículo de cada grado incluye contenido que corresponde a cada uno de los cinco estándares. El contenido curricular tiene un enfoque en espiral en el que cada uno de los temas se va ampliando en alcance y profundidad (DEPR, 2013).

El estándar de numeración y operación establece los criterios de dominio de la comprensión de los números, del significado de las operaciones y de la fluidez en el cómputo (DEPR, 2007). En este estándar el estudiante de cuarto al sexto grado se enfrenta a un contenido que enfatiza las operaciones de suma, resta, multiplicación y división, como también a las destrezas de cómputo mental, de estimación y a procedimientos con lápiz y papel, y calculadoras (DEPR, 2003). El dominio de dicho contenido proveerá para que el estudiante lo aplique a la solución de problemas utilizando el conjunto de números cardinales. En el cuarto grado se enfatiza el contenido de valor posicional con los números cardinales y decimales, se comienza a relacionar el decimal con la fracción simple y se realizan sumas y restas con fracciones homogéneas. En el quinto grado se amplía el contenido de valor posicional con cardinales y decimales, se añade material sobre la clasificación de fracciones, la equivalencia de fracciones, la comparación de fracciones, el por ciento, y las operaciones con las diferentes fracciones y los
números decimales. En el sexto grado se comienza con el concepto de número racional no negativo y sus propiedades, se introduce el concepto de potencia y exponentes, se amplía el concepto de porcentaje, se y se realizan sumas con el conjunto de los números enteros.

En el estándar de álgebra, el contenido en los diferentes grados provee para que el estudiante pueda “realizar y representar operaciones numéricas que incluyen relaciones de cantidad, funciones, análisis de cambios, empleando números, letras (variables) y signos” (DEPR, 2007, p. 5). En el cuarto grado el contenido incluye los patrones numéricos y geométricos, la interpretación y utilización de variables, de símbolos y propiedades para simplificar expresiones y la resolución de ecuaciones sencillas. En el quinto grado se amplía el concepto de patrones y relaciones para crear patrones y hacer generalizaciones, y se incluye el tema de evaluación de expresiones algebraicas. Al finalizar el sexto grado se espera que el estudiante pueda desarrollar en forma intuitiva las ideas de relación y función, y pueda reconocer y crear patrones y relaciones. Debe llegar a generalizar una descripción, usando letras y símbolos. Según describen las tres expectativas de sexto grado del estándar de álgebra (DEPR, 2007), el estudiante debe usar las ecuaciones en un contexto de solución de problemas para generalizar, debe llegar a proponer expresiones verbales para las algebraicas y ecuaciones, y llegar a describir situaciones con constantes o variaciones de cambio y comparar las mismas.

En estándar de geometría es el segundo que se trabaja con mayor profundidad, luego del estándar de numeración y operación. En el cuarto grado se enfatiza el contenido del plano cartesiano, y los conceptos relacionados con las figuras bidimensionales, tales como identificar el punto, la recta, el plano, el segmento, el rayo, el ángulo, la congruencia, las transformaciones, el radio, el diámetro y la simetría. Además, se incluye contenido sobre la descripción de prismas y de pirámides. En quinto se amplían los conceptos de figuras bidimensionales y tridimensionales,
Enfatizando la identificación de sus propiedades. Se amplía el contenido porque se incluyen propiedades de los ángulos internos de un triángulo y de un cuadrilátero. El estudiante de sexto grado debe dominar aprendizajes relacionados con las definiciones y propiedades de figuras bidimensionales para poder representarlas. Debe poder identificar polígonos, y las propiedades de las diferentes rectas, así como las propiedades y relaciones en diferentes ángulos, de tal modo que pueda llegar a establecer conjeturas a base de las propiedades que definen a cada una de las figuras. El contenido incluye conocimientos sobre las partes del círculo y poder establecer relaciones entre ellas. Además, debe identificar y construir transformaciones con figuras planas.

En el estándar de medición en cuarto grado se desarrollan los contenidos de perímetro, área, longitud, unidad de medida y la conversión de medidas simples dentro de un mismo sistema. La profundidad del currículo provee para que el estudiante mida el área y el perímetro de figuras rectangulares, compare figuras tomando como referencia el área y el perímetro, utilice fórmulas para resolver problemas de perímetro y área, calcule estimaciones de perímetro y área usando diferentes métodos, y seleccione instrumentos apropiados para medir. Además, el estudiante determina conversiones solamente de longitud en un mismo sistema de medidas.

Al comparar el contenido del estándar de medición de cuarto, quinto y sexto grado se observa un mayor alcance y profundidad de los mismos temas. Se incluyen los temas de conversión de medidas en un mismo sistema, medidas de ángulos, determinar perímetro, área y volumen. En cuarto y sexto grado se habla de aplicar fórmulas, proveyendo mayor profundidad en el sexto grado. En el sexto se añaden contenidos tales como, hallar el perímetro de triángulos, de cuadriláteros y de figuras compuestas, determinar medidas de peso, de hora y de temperatura y determinar volumen de figuras tridimensionales, entre otras.
En el nivel de cuarto al sexto grado se proveen además, conocimientos correspondientes al estándar de análisis de datos y probabilidad. En el cuarto grado se enfatiza la recopilación, organización e interpretación de datos. Se espera que el estudiante pueda comunicar, representar e interpretar datos por medio de gráficas y tablas. Los aprendizajes incluyen identificar la moda, la mediana y la amplitud en un conjunto de datos. El contenido incluye además, la comparación e interpretación de dos conjuntos de datos, la construcción de diferentes tipos de gráficas. En el quinto grado se amplía el contenido para incluir el análisis de encuestas a base de recopilación de datos, la gráfica de tallo y hojas y determinar la media, moda y la mediana. En el sexto grado se añade el contenido de histogramas, la forma, centro y dispersión de datos; la interpretación de los datos estadísticos en contextos, y la comunicación de resultados usando la terminología y notación apropiada.

En el contenido de probabilidad el cuarto grado incluye predicciones y pruebas de eventos en experimentos simples. En el quinto grado se añade el concepto de probabilidad teórica y experimental. En el sexto grado el contenido continúa con el tema de probabilidad teórica y experimental, pero con un mayor alcance. Se incluyen los contenidos sobre el significado de la probabilidad entre cero y uno, se estima la probabilidad de un evento donde no se conoce la teórica y se formulan preguntas para interpretar y comunicar resultados de encuestas y experimentos simples.

Además de los estándares de contenido, se incluyen los estándares de proceso (DEPR, 2003). Los mismos permean en todos los grados y se utilizan para aprender los conceptos fundamentales de la numeración, las operaciones, la geometría, la medición, la estadística y la probabilidad. Al desarrollar el estándar de razonamiento y prueba el estudiante tiene la oportunidad de razonar al realizar investigaciones y evaluar conjeturas y argumentos sobre las
matemáticas. El estándar de proceso de comunicación le permite al estudiante organizar, analizar, evaluar e integrar ideas a través del lenguaje de las matemáticas. A través de las conexiones el estudiante reconoce, comprende, y aplica las conexiones entre las ideas matemáticas dentro y fuera del contexto de las matemáticas. La solución de problemas le da oportunidad al estudiante para que construya sus conocimientos y las representaciones favorecen su capacidad para crear diagramas, modelos o manipulativos para organizar, documentar y comunicar las ideas matemáticas

El rol del maestro en la reforma basada en estándares. El nuevo enfoque de enseñanza “requiere que el estudiante reinvente la matemática esencial para su vida con la ayuda del maestro” (DEPR, 2010, p. 4). Por ende, la implantación de la reforma basada en estándares de matemáticas implica la reflexión del maestro sobre su práctica y el cambio en su rol como educador de matemáticas en la sala de clases. Ese nuevo rol pasa de ser un informante de datos a uno donde diseñe un escenario en su sala de clases para que el estudiante descubra, investigue y concluya. Es el que propicia interacciones entre los estudiantes, a través de la estructuración y organización del salón, hacia el desarrollo de una cultura de colaboración, experimentación y reflexión entre los estudiantes.

Desarrollo profesional. La reforma basada en estándares promueve el desarrollo profesional con el propósito de re conceptualizar el rol del maestro. Le impone al maestro enormes retos tanto en el conocimiento del contenido como en el pedagógico, y le asigna la inmensa responsabilidad de ser la piedra angular que sostiene la reforma. La expresión de Darling-Hammond y McLaughlin (2004) resume lo antes expuesto:

El éxito de esta reforma depende, en último extremo, de que los maestros y profesores logren la compleja tarea de aprender las habilidades y actitudes planteadas por los nuevos
enfoques y, al mismo tiempo, desaprendan las prácticas de enseñanza y modifiquen las expectativas sobre los alumnos que hasta ahora han dominado sus vidas profesionales (p. 2).

El desarrollo profesional entonces, viene a cumplir con la tarea de equipar al maestro tanto en conocimiento de contenido y en el pedagógico con miras a fortalecer las capacidades del estudiante. Se presume que se comienza un proceso de cambio a partir de la participación del maestro en el desarrollo profesional. Por eso es tan imprescindible que los proveedores de servicios profesionales diseñen e implanten programas de desarrollo profesional con probabilidades de ser efectivos. La literatura acerca de este tema evidencia unos elementos que comparten aquellos programas con oportunidades de alcanzar las metas relacionadas con la reforma y lograr el cambio en el maestro.

La literatura relacionada con el desarrollo profesional refleja un consenso acerca de las características principales que definen a programas efectivos. En el consenso se incluyen elementos de contenido, de contexto y de diseño de las experiencias de aprendizaje. Birman, Desimone, Porter y Garet (2000), Guskey (2003) y Wei et al., (2009) estudiaron investigaciones relacionadas con programas de desarrollo profesional para identificar aquellas características de efectividad que estos compartían. Según Wei et al. (2009), estos son los que forman el cimiento para un desarrollo profesional dirigido a fomentar el aprendizaje del maestro, el mejoramiento de la enseñanza y el aprendizaje del estudiante. Las características que más predominan de acuerdo a la evidencia de estos autores se presentan y discuten a continuación.

Aumento del conocimiento del contenido y pedagógico. Guskey (2003) analizó 13 listas de características de desarrollo profesional efectivo que fueron publicadas en la última década. Aunque encontró que mucha evidencia era inconsistente y a veces contradictoria sí identificó unas características que se repetían en las listas con mucha frecuencia. La más citada fue el
aumento del conocimiento del contenido y del pedagógico. Estos programas efectivos ayudan al maestro a entender en forma profunda el contenido y las formas en que se enseña para lograr el aprendizaje del estudiante. Así lo sostiene Elmore (2002) cuando dice que “el desarrollo profesional efectivo tiene su foco en el aprendizaje del estudiante a través del mejoramiento de las destrezas y el conocimiento del maestro” (p. 6-7).

El cómo se enfoca ese contenido, es lo que hace la diferencia entre programas exitosos y los no exitosos. Aquellos denominados efectivos utilizan el contenido para concretizar las tareas de la enseñanza, para orientar las actividades de avalúo y la reflexión (Wei et al., 2009). Se enfatizan destrezas de altos niveles de pensamiento tales como el análisis y la resolución de problemas (Smith & Gillespie, 2007). La discusión del contenido enfatiza en cómo ese maestro puede utilizar prácticas específicas de pedagogía para enseñar aspectos específicos del contenido (Birman et al., 2000 y Elmore, 2002). Además, destaca en cómo ese estudiante desarrolla la comprensión conceptual del tema que se enseña y en las destrezas que se espera este alcance.

Darling-Hammond, Wei, Andree, Richardson y Orphanos (2009) añaden que estos programas toman en consideración los conceptos y destrezas que los maestros quieren que los estudiantes aprendan y que están relacionados con aquellos temas que a los estudiante se les hace más difícil entender. Consideran además que el foco en el aprendizaje del estudiante a través de la enseñanza de un contenido específico provee para que grupos de maestros analicen datos de la ejecución del estudiante que les permitan identificar los errores más comunes que comete el estudiante. De esta forma pueden identificar y evaluar estrategias que funcionan y las que no funcionan durante la enseñanza de ese contenido específico. El fin último del desarrollo profesional se dirige a lograr cambios en el maestro. Cambiar las prácticas requiere proveer medios para que pueda expandir, enriquecer y elaborar su sistema de conocimiento, tanto en la
materia que enseña, como en los procesos de enseñanza y aprendizaje y en las formas en que el estudiante aprende (Borko & Putnam, 1995).

Con el propósito de identificar formas de desarrollo profesional efectivo Birman et al., (2000) hicieron una investigación donde encuestaron una muestra de probabilidad nacional representativa de maestros que habían participado de programas de desarrollo profesional financiados por fondos Eisenhhover. Ellos encontraron que aquellos programas que enfocan en el contenido están directamente relacionados con un aumento en conocimiento y destrezas del maestro. Los maestros que participaron de esta investigación informaron que aquellos programas que enfatizan las técnicas de enseñanza sin enfatizar el contenido no eran efectivos.

Duración (Sostenido y Continuo). La provisión de sostenido y continuo fue una característica identificada en los estudios hechos por Birman et al., (2000), Blank, de las Alas y Smith (2007), Elmore (2002) y Guskey (2003). Yoon, Duncan, Scarlos y Shapley (2007) pudieron establecer una relación positiva entre programas de capacitación profesional identificados como sostenidos y continuos, y el aumento en el logro del estudiante. La efectividad está relacionada en la cantidad de tiempo y en cuánto se extienden las actividades de capacitación. Las actividades de mayor duración tienen mayor foco en el contenido de la materia, proveen más tiempo para el aprendizaje activo y favorecen la coherencia con otras experiencias del maestro. El tiempo debe estar bien organizado y estructurado, y con un propósito bien definido de tal modo que el elemento de duración en el programa de desarrollo profesional logre ser efectivo (Guskey, 2003). En estos programas se proveen más horas contactos de desarrollo profesional y se diseñan actividades de seguimiento o asistencia durante la implantación que lleva acabo el maestro. Un programa que se caracterice por ser sostenido le da la oportunidad al maestro de que reciba retroalimentación al implantar las nuevas prácticas.
El desarrollo profesional que facilita que al alcanzar un objetivo, se planifique para alcanzar otro más ambicioso, demuestra la continuidad y consistencia en el mejoramiento de la práctica educativa (Elmore, 2002).

Aprendizaje activo. En la investigación realizada por Birman et al. (2000) los maestros participantes informaron que las actividades de aprendizaje activo fueron claves en el aumento del conocimiento y en mejorar sus destrezas, lo que favoreció el cambio en las prácticas de enseñanza. El aprendizaje activo se promueve en la medida en que las actividades involucren al maestro en las discusiones, en la planificación, y práctica de las estrategias en las cuales se capacita. Se dan oportunidades para que el maestro observe y sea observado en la enseñanza, para que diseña planes, modele estrategias, revise trabajos de estudiantes, haga presentaciones, dirija y escriba.

Participación colectiva. La participación colectiva se observa cuando se ofrecen actividades de desarrollo profesional a grupos de maestros de la misma escuela, materia, grado o nivel. Esta modalidad favorece la inclusión de actividades de aprendizaje activo y puede contribuir a una cultura escolar de colaboración donde maestros de la misma escuela, mismo grado o materia pueden diseñar e implementar proyectos en común para lograr las metas de enseñanza (Birman et al., 2000). En la modalidad de participación colectiva de toda la escuela se promueve que los maestros trabajen unidos para entender las conexiones entre el contenido de los grados previos y subsecuentes (Blank et al., 2007). La participación colectiva promueve la colegialidad y colaboración evidenciado por los estudios de Guskey (2003) y Wei et al. (2009). Ellos identificaron investigaciones que destacaron la importancia de la colaboración y colegialidad en el contexto de los programas de desarrollo profesional. Los hallazgos encontraron que la colegialidad y colaboración se observa cuando se proveen oportunidades para
que los maestros trabajen juntos, reflexionen sobre sus prácticas, intercambien ideas y compartan estrategias que han identificado efectivas para lograr las metas académicas. Guskey (2003) recomienda que la colaboración tiene que ser bien estructurada con un propósito definido y esfuerzos guiados por unas claras metas para el mejoramiento del aprendizaje del estudiante. Él advierte que de no ser así, existe la posibilidad de bloquear el cambio o inhibir el progreso en vez de beneficiar el proceso.

Coherencia. En los estudios realizados por Garet, Porter, Desimone, Birman y Yoon (2001) y Wei et al. (2009) se encontró que hay una mayor probabilidad de mejorar el conocimiento de contenido y las destrezas del maestro si son coherentes con los esfuerzos de reforma. Hay coherencia si se construyen las actividades de capacitación tomando en cuenta lo que el maestro conoce, si enfatiza en el contenido y en las estrategias alineadas con los estándares, los marcos curriculares y el avalúo. Hay coherencia en la medida en que haya alineación con las metas y necesidades identificadas en el núcleo escolar. Tiene que existir concordancia entre lo que el maestro aprende en el desarrollo profesional y lo que va a implantar durante sus prácticas de enseñanza, de forma tal que el cambio en el maestro tenga oportunidades de ocurrir (Wei et al., 2009).

Desarrollo profesional tradicional efectivo. De acuerdo a Smith y Gillespie (2007) el modelo de capacitación profesional tradicional tiene unas características que lo hacen meritorio para capacitar al maestro. En este modelo se incluye los talleres de una sesión o de corta duración tales como sesiones de conferencias, adiestramientos, lecturas y seminarios. Se caracteriza porque se les presentan diferentes temas de capacitación a los maestros para que seleccionen aquellos donde estén interesados en participar. El interés en la participación del maestro puede estar basado en sus necesidades profesionales, en créditos de educación continua,
requisitos para re certificación o en su motivación para aprender. Este modelo ha sido duramente criticado (Elmore, 2002) porque está en duda cuánto aporta al mejoramiento de toda la escuela, y a la práctica del maestro como parte de una comunidad escolar.

A pesar de las críticas, Smith y Gillespie (2007) identificaron unos atributos que pueden hacerlos más efectivos en promover el cambio del maestro y el aprendizaje del estudiante. Hay mayor posibilidad de éxito si el programa tiene larga duración. Una larga duración permite mayor tiempo para que el maestro pueda aprender acerca de su propia práctica. Otro atributo que debe tener este modelo es la alineación profunda entre lo que el maestro aprende en el programa y su práctica en contexto. Las actividades diseñadas deben servir para que el maestro pueda aplicar lo aprendido cuando vuelve al salón de clases. Garet et al. (2001) evidenciaron que el foco en el conocimiento de la materia contribuye al cambio en las prácticas de enseñanza de los maestros. El énfasis en el análisis y la reflexión le da mayor efectividad a estos programas. Lograr ese énfasis requiere que se enfoque en el aprendizaje y en la solución de problemas. El taller tradicional con el enfoque dirigido a toda el personal de la escuela puede lograr mayor efectividad (Elmore, 2002). Al ser este modelo el más comúnmente usado (Smith & Gillipse, 2007) es importante que se tengan en mente estos atributos para que haya mayor probabilidad de lograr el aprendizaje del maestro y el cambio en sus prácticas educativas.

Comunidades de aprendizaje. Las comunidades de aprendizaje son una modalidad de desarrollo profesional recomendada en la literatura desde hace muchos años y muy aceptada en estos días (Guskey, 1995; Johnson, Fargo & Kable, 2010). En este tipo de desarrollo profesional se da la oportunidad para que los maestros situados en sus escenarios de trabajo puedan reflexionar sobre las nuevas prácticas y compartan sus conocimientos. Este modelo provee el
aprendizaje enclavado en diferentes contextos locales, que pueden incluir toda la escuela o a un programa en específico (Smith & Gillespie, 2007).

Las comunidades de aprendizaje comparten muchas de las características que identifican a los programas de desarrollo profesional de alta calidad. Se caracterizan por establecer y compartir los valores y las creencias. Esa visión fortalece que los maestros se apoyen y compartan las prácticas que han sido exitosas en la sala de clases. Se establece un ambiente de reflexión y colaboración que promueve la implementación de cambios. Según Guskey (1995), la mayoría de los programas de desarrollo profesional exitosos equipan a los participantes con oportunidades para compartir expectativas y buscar soluciones a los problemas comunes que enfrentan. Por otra parte, Johnson et al. (2010) indican que los programas de desarrollo profesional deben apoyar experiencias que propicien el crecimiento social, personal y profesional que resulte en el establecimiento de estructuras de colaboración que promuevan cambios en las creencias existentes, elemento necesario para lograr los esfuerzos en las reformas educativas.

Newmann, King y Youngs (2000) están de acuerdo en que el desarrollo profesional debe perseguir la capacidad de la escuela. Estos investigadores definen la capacidad de la escuela como el “poder colectivo de todo el personal para mejorar el aprovechamiento académico de toda la escuela” (p. 3). Uno de los aspectos de capacidad que mencionan estos autores es la comunidad profesional. Mencionan unos elementos que se encuentran en una comunidad de aprendizaje fortalecida: (a) se distinguen por tener un personal que comparten las metas para el aprendizaje del estudiante, (b) hay colaboración y responsabilidad compartida entre la facultad para lograr las metas, (c) para afrontar los retos que se encuentran se guían por la indagación profesional y (d) el personal tiene oportunidades para influenciar las normas y políticas establecidas.
Newmann et al. (2000) establecieron que el liderazgo del director es un elemento muy influyente en la capacidad de la escuela. Thompson, Gregg y Niska (2004) expresaron que el liderazgo de apoyo es uno de los recursos humanos necesarios para que una escuela sea una comunidad de aprendizaje. El director debe tener la habilidad de compartir la autoridad, facilitar el trabajo del maestro y participar hacia la capacidad de la escuela sin querer dominar todos los procesos. Esto sugiere que el liderazgo del director es un elemento esencial para que se implante un desarrollo profesional que rinda frutos. Este debe conocer a su personal para que pueda construir competencias y conocimientos en unos, utilizando las fortalezas de otros.

Evidencia que sostiene las comunidades de aprendizaje la obtuvo Clarke (1997) cuando los maestros concluyeron que las oportunidades de apoyarse unos a otros, de planificar juntos y de cuestionarse día a día facilitaron el crecimiento profesional durante la implantación de un currículo basado en reforma. Esto ayudó al cambio en las creencias y prácticas de un maestro que comenzó a sentirse cómodo planteando problemas para desarrollar la clase y permitiendo un escenario para que el estudiante esforzara su pensamiento para resolver los mismos con una limitada aportación del maestro.

Oportunidades para la reflexión. Lograr que el cambio sea generativo y sostenido requiere que se establezca en la escuela una cultura de aprendizaje profesional (Timperley, Wiseman & Fung 2003). La reflexión crítica es una alternativa a considerar. La misma es una técnica clave en los programas de desarrollo profesional efectivos (Ferraro, 2000). Cuando se reflexione se piensa en forma crítica sobre las prácticas de la sala de clases. El acto de reflexión debe ser intencionado, creando oportunidades de revisar y criticar, para aumentar las oportunidades de aprendizaje tanto para el maestro como para el estudiante. Puede llevar a desarrollar los elementos para desarrollar la capacidad del núcleo escolar. Es un proceso de
colaboración, donde los docentes reflexionan acerca de la práctica basados en datos de aprovechamiento, promocionando un foco compartido y negociando entendimiento dentro de la escuela (Pritchard & McDiarmid, 2006). En el proceso se recoge y analiza la evidencia a base de los datos. Se parte de la realidad existente en el núcleo escolar. El proceso reflexivo debe tomar una variedad de formas tales como; grupos grandes, equipos de estudio y aprendizaje entre pares, en las cuales los docentes examinan sus concepciones sobre el aprendizaje y la enseñanza y sus prácticas en la sala de clases (Ferraro, 2000). Añade Ferraro (2000) que dicha práctica fomenta la comprensión profunda de los estilos de enseñanza, lo que promueve una mayor efectividad.

Coaching. “Pocas personas pueden moverse de la experiencia de desarrollo profesional directamente a la implantación con éxito” (Guskey, 1995, p. 123). El coaching es parte de los esfuerzos positivos que los proveedores de servicios profesionales diseñan para extender más allá de un taller las experiencias de desarrollo profesional para el aprendizaje del maestro. A través de esta práctica se conecta lo aprendido en el taller con la aplicación en la sala de clases. Se provee para un aprendizaje sostenido del maestro una vez terminado el taller.

El coaching es una estrategia de desarrollo profesional que va construyendo aprendizaje gradualmente con la colaboración y orientación de un guía. Se facilitan oportunidades para discutir y reflexionar sobre la aplicación de las nuevas prácticas y lograr el aprendizaje del maestro. (Collect, 2012) creó un modelo conocido como Gradual Increase of Responsibility que va construyendo el andamiaje hacia el cambio. El mismo se implantó con el propósito de transformar el aprendizaje de maestros sobre la enseñanza de la literacia y poder comprender más a fondo el proceso de coaching. Este consistía de cinco etapas: (a) modelamiento del coach, hacer recomendaciones, (b) hacer preguntas para comprobar, (c) confirmar las decisiones apropiadas del maestro y (d) elogiar la labor realizada por el maestro. El modelo fue creando un
andamiaje hacia el cambio. Los resultados aparentaron un aumento por etapas en el *expertise* del maestro.

La efectividad del *coaching* es sostenida en uno de los hallazgos encontrados en la investigación que llevó a cabo Clarke (1977) para identificar en qué forma el rol del maestro cambiaba al implantar un proyecto de reforma y cuáles eran los factores que influenciaban el proceso de cambio. En la misma, los maestros reclamaron que el investigador (*sounding board*) pareció facilitar el crecimiento profesional más que lo que hicieron las cuatro sesiones del desarrollo profesional. El investigador tenía dominio de la materia y estuvo involucrado arduamente dando apoyo a través de visitas semanales a los maestros.

Apoyo del sistema educativo. El contexto de los programas de desarrollo profesional exitosos le da importancia al apoyo sostenido de los diferentes niveles del sistema educativo (Guskey, 1995; Wei et al., 2009). El cambio es un proceso individual tanto como organizacional que debe ser adaptado a las características contextuales de su entorno (Guskey, 1995). Ese contexto se da en un marco de esfuerzo de todos los involucrados para el mejoramiento del aprendizaje del estudiante. Esto incluye visitas de seguimiento, apoyo de los líderes de los distritos y el contacto entre pares. Se planifican actividades más allá del ofrecimiento de un taller, que incluyen, ambientes colaborativos y de comunidades de aprendizaje para practicar lo aprendido en los talleres.

Programa Mathematics and Science Partnership. El programa MSP fue implementado por la legislación del Título II, Parte B de las secciones 201-2203 de ley de Educación Elemental y Secundaria de 1965, según enmendada por la ley “No Child Left Behind, del 2001” (US Department of Education, 2012). Desde el año 2002 esta ley otorga fondos para crear alianzas entre los departamentos de ciencias, tecnologías, ingeniería y matemáticas de instituciones de
educación superior y agencias educativas locales con alta necesidad con el propósito fundamental de mejorar la educación en las áreas académicas de matemáticas y ciencias. Los fondos se adjudican a base de fórmula para desarrollar programas educativos que persigan el mejoramiento del conocimiento del contenido y las habilidades de enseñanza de los maestros de matemáticas y ciencias, como también el aprendizaje de los estudiantes. Los criterios para la distribución de los fondos son la población estudiantil y el nivel de pobreza. Sin embargo, ningún estado recibe menos de la mitad del uno por ciento del presupuesto total asignado.

El pobre desempeño de los estudiantes norteamericanos en pruebas internacionales de ciencias y matemáticas crea una urgente necesidad de mejorar la educación en estas áreas académicas. Mientras esto ocurre, los hallazgos de investigaciones relacionadas con la pedagogía estaban proveyendo información que relacionaban positivamente el aprendizaje de los estudiantes con el dominio del contenido y las implantación efectiva de las estrategias de enseñanza (O’Connell Johnson, Meeley & Lund, 2011). Tal situación suscita el advenimiento del programa MSP. En los Estados Unidos de Norteamérica los esfuerzos para mejorar la educación se enfocan en capacitar al máximo al maestro de la sala de clases porque este es visto como el agente de cambio más favorable para mejorar el aprendizaje del estudiante. Esto promueve la creación de programas para el desarrollo profesional sostenidos y ricos en contenidos como la iniciativa MSP. Un promedio anual de 52, 000 educadores han recibido educación para mejorar la enseñanza de matemáticas y ciencia entre los años 2004 al 2012 bajo esta iniciativa (O’Connell Johnson, 2012). Añade O’Connell Johnson (2012) que la participación de maestros ha favorecido el impacto en alrededor de 7.8 millones de estudiantes durante los años de 2009 al 2011.
Las investigaciones sobre el desarrollo profesional han identificado ciertos componentes que patrocinan su efectividad. O’Connell Johnson (2012) identifica la cantidad de horas de duración, las experiencias profundas y de seguimiento, la colaboración profesional y el enfoque en el contenido a través de actividades de aprendizaje activo, como elementos claves en programas de desarrollo profesional efectivos. Estos elementos han sido incorporados en la legislación de NCLB en las secciones 2201-2203 de la parte B del título II. En dichas secciones se autorizan las siguientes actividades que son compatibles con los hallazgos sobre programas de desarrollo profesional de calidad.

- Crear programas de desarrollo profesional continuos que mejoren el conocimiento de contenido para los maestros de matemáticas y ciencias

- Promover la adquisición de sólidas destrezas para la enseñanza a maestros de matemáticas y ciencias y para educadores de maestros, incluyendo métodos de enseñanza que estén fundamentados en la investigación y la tecnología.

- Establecer institutos o talleres de verano para maestros de matemáticas y ciencias de escuela elemental y secundaria, que incluyan actividades de seguimiento. Los institutos de verano consisten de por lo menos dos semanas de trabajo y el seguimiento debe ser de por lo menos tres días. Estos deberán estar directamente relacionados al currículo y las áreas académicas donde el maestro provee la enseñanza

- Reclutamiento de matemáticos, ingenieros y especialistas en ciencia para enseñar a través de incentivos, estipendios para certificaciones, becas para tomar cursos avanzados en ciencias, tecnología, ingeniería y matemáticas, (STEM, por sus siglas en inglés).
• Desarrollar o rediseñar currículos más rigurosos y que estén alineados a los estándares de contenido locales y a los establecidos en los estudios postsecundarios en las áreas académicas de matemáticas y ciencias.

• Establecer programas educativos a distancia para maestros de matemáticas y ciencias usando currículos innovadores, basados en contenidos y fundamentados en investigación con base científica.

• Diseño de programas para preparar maestros mentores de ciencias y matemáticas en una escuela, de forma tal que provean asistencia y desarrollo profesional a otros maestros de su misma escuela.

• Establecer y operar programas que aumenten el conocimiento de contenido del maestro a través del contacto de estos con científicos, matemáticos e ingenieros.

• Diseño de programas para identificar y desarrollar maestros expertos en ciencias y matemáticas desde el Kindergarten hasta el octavo grado.

• Adiestramientos a maestros de ciencias y matemáticas y desarrollo de programas que alienten a la mujer joven y a otros individuos insuficientemente representados en carreras relacionadas a las ciencias y matemáticas a perseguir grados postsecundarios en dichas áreas.

Cambio del maestro. Muchos de los elementos de la reforma requieren cambio del maestro para que los esfuerzos se puedan dar. El éxito de cualquier reforma debe tomar en cuenta el conocimiento pedagógico del maestro, sus creencias y el contexto en el cual va a ocurrir la enseñanza (Handal & Herrington, 2003). La literatura provee una variedad de puntos de vista en torno a factores, consideraciones o procesos que intervienen o predisponen en el cambio del maestro y en cuanto a modelos para propiciar el cambio. Los mismos incluyen
aquellos que tienen que ver con la persona tales como sus convicciones, actitudes, motivación, experiencias, y otras que consideran los factores externos y los asociados al programa de desarrollo profesional. Estos factores potenciales pueden incidir en la aplicación de los aprendizajes que el maestro obtiene de un programa de desarrollo profesional. Hay una serie de elementos asociados al maestro en su carácter individual que pueden afectar en forma potencial la aplicación de lo que el maestro aprende. Smith y Gillespie (2007) enumeran la motivación para asistir al programa, el interés que lo lleva a participar del mismo, su sentido de autoeficacia, el estilo cognitivo de preferencia para aprender, la reflexividad del maestro, y la educación formal y años de experiencia. Ottoson (1997) llama a estos factores, los de predisposición y le añade las actitudes y los valores que posee ese maestro. Por otro lado Vetter (2012) expresa que el cambio en el maestro ocurre al reflexionar sobre las experiencias.

Conocimiento del maestro. El contenido de matemáticas que el maestro posee es un factor determinante en la aceptación, internalización y transferencia de los nuevos aprendizajes a las prácticas educativas (Bray, 2011). Por tal razón, para los estudiosos de este tema es esencial entender el significado del conocimiento del contenido de un maestro. El interés en estudiar este concepto se agudiza para mediados de los años de 1980 (Ball et al., 2008). Shulman (1986) fue uno de los que propuso un modelo al respecto (Ball et al., 2008). Este modelo de Shulman establece tres categorías de conocimiento de contenido: (a) conocimiento de contenido de la materia, (b) conocimiento pedagógico del contenido y (c) el conocimiento del currículo. El modelo de Shulman ha servido de plataforma para los modelos teóricos propuestos por Borko y Putnam (1996) y Ball et al. (2008), los cuales definen más ampliamente el concepto de conocimiento de contenido para la enseñanza de las matemáticas.
La categoría de conocimiento de contenido que establece Shulman (1986) se refiere a la cantidad y organización del conocimiento en la mente del maestro. Se conocen los datos y conceptos de una materia en particular, pero además se entiende la estructura de la materia. La segunda clase de conocimiento es el conocimiento pedagógico del contenido. En esta categoría se incluye el conocimiento acerca de cómo enseñar la materia. Es el conocimiento de cómo representar los conceptos a través de analogías, ejemplos, explicaciones o demostraciones. La tercera categoría incluye el conocimiento del contenido curricular. La misma comprende los programas diseñados para enseñar los diferentes tópicos en un nivel o grado y la variedad de materiales instruccionales disponibles para enseñar la materia. Shulman (1987) amplió las categorías de conocimiento a siete, las cuales comprenden: (a) conocimiento del contenido, (b) conocimiento pedagógico general, (c) conocimiento del currículo, (d) conocimiento pedagógico del contenido, (e) conocimiento de los estudiantes y sus características, (f) conocimiento de los contextos educativos y (g) conocimiento de los fines, propósitos y valores de la educación.

El modelo de Borko y Putnam (1996) establece tres categorías de conocimiento para la enseñanza de las matemáticas: (a) conocimiento pedagógico general, (b) conocimiento del contenido de la materia y (c) el conocimiento pedagógico del contenido. El conocimiento general pedagógico se define como aquel que está relacionado con la enseñanza, el aprendiz y el aprendizaje, que se extiende más allá de la materia. El mismo comprende las estrategias efectivas para la planificación, para las discusiones durante las clases, además del conocimiento general acerca de cómo el estudiante piensa y aprende. En el conocimiento del contenido de la materia se hace referencia al conocimiento de datos, de conceptos, de procedimientos, y a los conceptos subyacentes en los procedimientos y las relaciones entre las ideas matemáticas. El conocimiento pedagógico del contenido se refiere a la forma en que el maestro organiza y
representa los conceptos y procedimientos del currículo de matemáticas de tal forma que haya entendimiento en el estudiante. En este se incluye la selección adecuada de materiales curriculares que sirven para promover el concepto, involucrar activamente al estudiante y desarrollar su intelecto. Brighton (2003) informa que un maestro con ausencia de este dominio va a tener dificultad en incorporar estrategias para la construcción del aprendizaje, incluyendo aquellas que promueven la investigación, y no podrá implantar en forma adecuada actividades para diferenciar la enseñanza y atender la diversidad que permea en todo salón de clases.

Ball et al. (2008) opinan que al término de conocimiento de contenido propuesto pon Shulman le falta profundidad y fundamentación empírica. Estos autores utilizando como base el concepto de contenido pedagógico propuesto por Shulman, construyeron un modelo de conocimiento de contenido para la enseñanza de las matemáticas. El mismo surge de los hallazgos obtenidos en el desarrollo de dos proyectos conocidos como Mathematics Teaching and Learning to Teach Project y Learning Mathematics for Teaching Project. La hipótesis propuesta por los investigadores acerca del contenido que el maestro de matemáticas necesita para enseñar está fundamentada en investigaciones con métodos cualitativos sobre las prácticas de enseñanza. Los hallazgos identificados en estos estudios cualitativos, sirvieron de base para establecer medidas sobre lo que es el conocimiento de matemáticas necesario para enseñar. De aquí surge el modelo que proponen, conocido como Conocimiento matemático para la enseñanza (Mathematical Knowledge for Teaching).

Este modelo consta de cuatro dominios. El primero se refiere al conocimiento común del de contenido (common content knowledge). Este es el conocimiento que permite realizar cómputos y resolver problemas de matemáticas en forma correcta. Es el conocimiento que se
utiliza en otros escenarios porque no es exclusivo de la enseñanza. Es el que permite que otras personas que no son maestros puedan contestar preguntas o resolver problemas de matemáticas.

El segundo dominio del modelo es el conocimiento especializado del contenido (specialized content knowledge). Es el conocimiento y destrezas de matemáticas que son exclusivas de la enseñanza. Es el que le permite al maestro entender diferentes interpretaciones de las operaciones, representar ideas matemáticas, responder a preguntas del por qué, identificar ejemplos que expliquen un concepto, hacer conexiones entre tópicos, evaluar y adaptar el contenido del libro de texto, modificar tareas fáciles a difíciles y viceversa, y escoger o desarrollar definiciones, entre otros.

El tercer dominio se define como el conocimiento del contenido y estudiantes (knowledge of content and students). Se combina el conocimiento del estudiante y el de las matemáticas. El maestro que posee este conocimiento anticipa lo que probablemente piensa el estudiante y aquello que puede encontrar confuso. Es central el dominio del maestro acerca de las interpretaciones y los conceptos erróneos que tiene el estudiante sobre el contenido particular que enseña.

El último dominio es el conocimiento del contenido y la enseñanza (knowledge content and teaching). En el mismo se combina el conocimiento de la enseñanza y el de las matemáticas. Se refiere al conocimiento matemático del diseño de la enseñanza. En este dominio se incluye el conocimiento para secuenciar el contenido y para identificar problemas al comenzar la lección y los que se utilizarán para profundizarla. En este dominio el maestro evalúa las ventajas y desventajas de las representaciones que utiliza para enseñar un tópico o concepto e identifica diferentes métodos y procedimientos para guiar la discusión del tema. En las discusiones de clases este dominio se observa en la medida en la que el maestro conozca
cuándo hacer una pausa para aclarar un concepto, cuándo utilizar la aportación del estudiante, cuándo realizar nuevas preguntas o asignar otras tareas para reforzar lo aprendido.

Tchoshanov (2011) sostiene que la oportunidad de la enseñanza para el aprendizaje de las matemáticas depende del conocimiento que tiene el maestro. Él manifiesta que la demanda cognitiva es una función del conocimiento de contenido que posee el maestro. Este autor propuso el término “tipo de conocimiento cognitivo del maestro” para describir las oportunidades de enseñanza y aprendizaje en el salón de clases. El tipo cognitivo se refiere a la clase de conocimiento y procesos de pensamiento que se requieren para que se complete una tarea efectivamente en términos de datos y procedimientos, de conceptos y conexiones, y de modelos y generalizaciones. El de datos y procedimientos es el conocimiento que requiere memorización de datos, definiciones, fórmulas, propiedades, reglas realizar procedimientos y cómputos, hacer observaciones, determinar medidas y resolver problemas rutinarios. El de conceptos y conexiones incluye la comprensión de conceptos, hacer conexiones, seleccionar y usar múltiples representaciones, transferir el conocimiento a nuevas situaciones y resolver problemas no rutinarios. El de modelos y generalizaciones requiere el conocimiento y pensamiento para generalizaciones de las oraciones matemáticas, diseñar modelos, hacer y probar conjeturas y probar teoremas.

El nivel de conocimiento que tiene el maestro sobre el contenido que le toca enseñar es un factor que afecta su respuesta a las innovaciones. “El maestro es menos efectivo cuando enseña conceptos que él mismo no domina completamente” (Brighton, 2003, p. 180). Señala este autor, que estas limitaciones en conocimiento de contenido pueden provocar que el maestro utilice el libro de texto como única fuente de contenido, que le falten competencias para identificar el dominio de destrezas y conceptos, que envíe mensajes incorrectos sobre las
matemáticas y que pueda transmitir en forma errónea el contenido del curso. Estos aspectos pueden afectar el desarrollo futuro del estudiante en matemáticas.

Creencias del maestro. Las creencias y concepciones del maestro son un tema muy discutido en la literatura del cambio del maestro. Esto, debido a que se cree que las mismas dan forma a las acciones que el maestro lleva a cabo en la sala de clases (Bray, 2011; Handal & Herrington, 2003; Prawat, Remillard, Putnam & Heaton, 1992; Stipek, Givvin, Salmon & MacGyvers, 2001). De acuerdo a estos autores las creencias que tiene el maestro sobre la materia, la enseñanza de su contenido, la naturaleza del aprendizaje del estudiante y del rol del maestro tienen implicaciones en el enfoque que este utiliza en su clase de matemáticas y por ende en las acciones que ejecuta en la sala de clases. Estas creencias actúan como un filtro cognitivo y afectivo que interpreta el nuevo conocimiento y las experiencias, para seleccionar aquello que será promulgado y que formará parte de las decisiones del maestro en cuanto al desarrollo de su práctica pedagógica (Handal & Herrington, 2003). Bray (2011), añade que el maestro tiene unas creencias más arraigadas que otras, lo que puede ocasionar conflictos en término de la selección que hace en determinado momento. Esto implica que las metas específicas que se hayan establecido en los programas innovadores tanto como las fortalezas de sus creencias tienen un impacto determinante en la selección que hace el maestro para guiar sus prácticas de enseñanza. A mayor compatibilidad entre las creencias y el cambio propuesto habrá una mayor oportunidad de éxito de la innovación (Handal & Herrington, 2003).

Lograr que el maestro integre las nuevas creencias es un proceso de reflexión sistemática que toma tiempo y que surge luego de la experimentación en la sala de clases. Esto lo evidenció Senger (1999) con los hallazgos obtenidos en sus intervenciones con tres maestros de cuarto y quinto grado que estaban implantando los nuevos estándares establecidos por la NCTM. La
La investigación estaba dirigida a conocer cómo los maestros procesaban el cambio. Se obtuvo información para entender las diferencias substanciales en las decisiones de los maestros sobre la reforma de matemáticas mientras iban cambiando a través del curso del estudio. Se determinó que el proceso de cambio varía de maestro a maestro y envuelve acciones y pensamientos recursivos. El autor presenta el ejemplo de este pensamiento recursivo describiendo acciones pedagógicas de Mr. Brown. Este maestro para empezar la clase usaba el repaso, cotejaba la asignación, resolvía ejemplos en la pizarra y luego empezaba la tarea asignada. Su cambio evolucionó para incluir periodos de discusión, uso de grupos pequeños, uso de manipulativos por los estudiantes y uso de problemas verbales.

El estudio da a conocer además, un modelo de ruta hacia el cambio de los maestros participantes. En este modelo el conocimiento nuevo es retenido sin compromiso y tentativamente mientras el maestro se hace cuestionamientos. En esta etapa el maestro puede rechazarlo. Si no lo rechaza, esta nueva información produce imágenes mentales acerca de las nuevas formas de practicar la enseñanza. Se requiere tiempo y reflexión. Las imágenes conducen al cambio experimental evidenciado por la práctica, y al cambio verbal evidenciado por expresiones que describen las imágenes. Esas expresiones se relacionan con el nivel de comodidad del maestro con la nuevas ideas y prácticas, a la confianza en sí las mismas pueden funcionar, o a las formas en que encajan con experiencias pasadas del maestro, entre otras. Si el maestro no rechaza la experimentación y verbalización entonces hace suya la nueva creencia que se va fortaleciendo a través de nuevas prácticas y expresiones verbales.

El estudio de Senger (1999), demostró que el maestro está constantemente haciendo decisiones para aceptar o rechazar el cambio en diferentes niveles. Esos niveles representan la ruta del cambio la cual está constituida por la visualización de la idea nueva, la experimentación,
la verbalización, la práctica de la enseñanza y la adopción de la nueva creencia que establece el cambio en la práctica de enseñanza. En resumen, esta investigación refleja que el proceso de cambio es complejo y que los programas de desarrollo profesional deben incluir en su diseño, procesos mentales a través de la reflexión y proveer oportunidades de experimentación que logren convencer al maestro que el cambio es de utilidad.

Identificar e incorporar las creencias del maestro sobre la enseñanza y el aprendizaje es una recomendación dada por Brighton (2003) si se quiere lograr efectividad en el programa de desarrollo profesional. En la investigación que él llevó a cabo los participantes recibieron un desarrollo profesional intenso por 3 años sobre la enseñanza diferenciada. Su diseño tenía coaching con un enfoque en la filosofía y en las prácticas de la enseñanza diferenciada, y en el proceso de avalúo. Los maestros participantes manifestaron aprobación y apoyo para guiar la diversidad de la enseñanza, pero muy pocos evidenciaron en la práctica la enseñanza diferenciada según las necesidades de sus estudiantes. Recomienda que se creen escenarios de reflexión donde el maestro discuta sus creencias existentes sobre la naturaleza de la enseñanza y aprendizaje y examine las nuevas que son la base del nuevo aprendizaje. Esas reflexiones tienen que combinarse con la enseñanza directa de la nueva práctica y un coaching que apoye los esfuerzos y retroalimente cuando sea necesario

Relación de creencias, conocimiento y prácticas educativas. Las creencias y el conocimiento del maestro de matemáticas impactan en forma significativa las prácticas de enseñanza que selecciona para el aprendizaje de sus estudiantes (Evans, 2012). Las mismas facilitan o limitan las oportunidades que tiene ese estudiante para recibir una enseñanza tal y como lo disponen los estándares y expectativas que enumera la reforma de matemáticas. Si no hay congruencia entre el sistema de las creencias del maestro y la filosofía y postulados de la
reforma se puede minimizar la voluntad para iniciar el cambio y por ende el nivel de éxito esperado (Handal & Herrington, 2003).

Clarke (1997) manifiesta que hay necesidad de especificar esos nuevos roles que describen el cambio en un salón de clases de matemáticas. Él hizo una revisión de la literatura para identificar las acciones que describen ese nuevo rol. Las mismas están alineadas con el sistema de creencias del maestro, estableciendo un vínculo directo entre ambas (prácticas y creencias).

La primera creencia del maestro que está orientado a la reforma considera que el estudiante tiene la capacidad de resolver problemas sin habérsele enseñado un procedimiento. Ese maestro comienza su clase con problemas no rutinarios. No provee el procedimiento para la solución del mismo hasta que los estudiantes comprendan y entiendan los conceptos definidos en el mismo. Permite además enfocar en el pensamiento del estudiante. El maestro que adapta los materiales para la enseñanza tomando en cuenta el contexto y las necesidades particulares de sus estudiantes cree que las matemáticas deben estudiarse en contexto de vida real. Los mismos tienen que ser significativos y relevantes al estudiante.

El salón de clases con prácticas orientadas en la reforma se organiza en una variedad de formas. El maestro forma equipos de trabajo, enseña cuando es necesario en forma individualizada y cuando lo es con todo el grupo. Además, organiza en forma variada las actividades de enseñanza para diferenciar el aprendizaje. Este maestro cree que los estudiantes son diferentes en relación al dominio del contenido, en la ejecución de tareas y en sus preferencias para aprender. Por tal razón en la planificación de la enseñanza se considera los estilos de aprendizaje, las necesidades e intereses y el conocimiento previo.
En un salón de clases donde existe la creencia de que debe permear una atmósfera de conjetura, de solución de problemas, de justificación y argumentación a favor de las ideas matemáticas, se desarrolla una comunidad de discusión sobre las matemáticas (follow player). En esas comunidades el aprendizaje se va construyendo con los métodos o soluciones que dan los estudiantes a los problemas que se usan para el desarrollo de la clase. En la investigación llevada a cabo por Clarke (1997) los hallazgos reflejaron que la creación de estos ambientes requiere considerable dominio del contenido matemático, del pedagógico y de del aprendizaje del estudiante. Además demanda mucho del maestro en términos de energía.

El maestro que identifica y enfoca sus clases en las grandes ideas tiene la creencia de que las matemáticas son en forma integrada, donde los procesos de resolver problemas, razonar y comunicar son centrales. El maestro no enseña el contenido en forma aislada. Este integra varios estándares para el desarrollo conceptual de un tema.

El uso de una variedad de avalúos le permite al maestro informarse adecuadamente en la toma de decisiones. Este maestro cree que las observaciones del trabajo del estudiante pueden serle útiles para planificar la enseñanza. Así mismo, los aspectos personales o sociales que lo describen pueden proveerle información útil para tomar decisiones en cuanto a la implantación de las actividades de aprendizaje.

Stipek et al. (2001) estuvieron también interesados en determinar si habían vínculos entre las creencias del maestro sobre la enseñanza y el aprendizaje de las matemáticas y sus prácticas educativas. Con ese propósito en mente llevaron a cabo una investigación cuantitativa con maestros de cuarto al sexto grado. En la misma los maestros contestaron un cuestionario para identificar su sistema de creencias en siete dimensiones acerca de las matemáticas y su enseñanza. Se observaron y grabaron clases para identificar las prácticas de enseñanza del
maestro según las siete dimensiones. Los resultados demostraron coherencia entre las creencias y las prácticas del maestro. Un conjunto coherente de creencias fue reflejado en las áreas de naturaleza y aprendizaje de las matemáticas, el rol del maestro, las estrategias efectivas de motivación y la naturaleza de las habilidades matemáticas.

Al considerar la naturaleza de las habilidades matemáticas, los maestros cuyas creencias reflejaron que la misma es una característica fija se percibieron menos eficaces y tenían una fuerte necesidad de controlar la conducta del estudiante. Los autores Stipek et al. establecen que esto podría deberse a que tales maestros asumen que el estudiante con poca habilidad en las matemáticas no tiene habilidad de usarla en forma productiva. Esto va en detrimento contra la reforma porque el maestro que cree en la teoría de identidad puede enfocar su clase en el nivel de habilidad del estudiante y minimizar tanto su esfuerzo como la persistencia con el estudiante que se ha identificado con poca habilidad en las matemáticas.

Otros resultados informaron que las siguientes tres creencias; las matemáticas son un conjunto de operaciones y procedimientos, que el maestro debe estar en completo control y que los refuerzos extrínsecos son estrategias efectivas para involucrar al estudiante en las matemáticas, estuvieron asociadas en forma positiva con un énfasis en el desempeño, mucho más que en el aprendizaje. Fueron asociadas en forma negativa con el énfasis en el entendimiento conceptual, la autonomía del estudiante y con escenarios de bajo riesgo. Así mismo se asociaron negativamente con el entusiasmo del maestro.

Proponen los datos identificados en el estudio, que deben cambiarse las creencias de muchos maestros para alcanzar el éxito en la reforma de matemáticas. Los autores recomiendan desarrollo profesional basado en la reflexión sobre las experiencias y las prácticas. El maestro
necesita involucrarse en la investigación práctica para que conozca nuevas estrategias, las utilice y reflexione sobre ellas.

La investigación de Brighton (2003) tenía el propósito de identificar cuáles eran las creencias del maestro de la escuela intermedia (middle school) acerca de la enseñanza y el aprendizaje en el salón de clases con diversidad y cómo las mismas afectaban su capacidad y voluntad para cambiar sus prácticas. Los participantes recibieron desarrollo profesional sobre enseñanza diferenciada y el proceso de avalúo. También hubo coaching enfocado en prácticas de enseñanza diferenciadas y en el avalúo. A pesar de todos los esfuerzos, las cuatro creencias identificadas representaron una amplia brecha entre las prácticas de enseñanza que se recomiendan para la diversidad de la sala de clases y las creencias del maestro. Las creencias identificadas fueron: (a) la enseñanza es un entretenimiento y por lo tanto el rol del maestro es animar y entretener; (b) enseñar es hablar y aprender es escuchar; (c) el estudiante se resiste y pone oídos sordos a los retos del maestro y (d) la equidad y justicia para el estudiante significa que todos hacen lo mismo de la misma forma. Cada una de estas creencias estuvo relacionada directamente con las prácticas implantadas durante la enseñanza.

El maestro que considera que la enseñanza es entretenecer enfatiza actividades para agradar y lograr el interés del estudiante sin establecer una alineación con los objetivos de la enseñanza. Es el que se sostiene del libro de texto y busca y utiliza materiales de la Internet porque son divertidos o agradables al estudiante. Los utiliza para evitar que el estudiante se sienta aburrido, pero sin considerar lo beneficioso del mismo para alcanzar las metas del programa. Este maestro le da mucho peso a la apariencia de los trabajos comparado con el peso dado a lo sustantivo.

El maestro con la creencia de que él enseña hablando y el estudiante aprende escuchando ofreció la clase en forma dirigida. La mayor parte del tiempo este estaba hablando. Es el
maestro que hace una pregunta, da tiempo para reflexionar, se señala a un estudiante para que conteste, se valida o se revisa la respuesta y se vuelve a otra pregunta.

La creencia que sostiene que el estudiante se resiste y pone oídos sordos a los retos del maestro promovió que el establecimiento de grupos de trabajo permaneciera constante durante todo el año. No se observó diferencia alguna entre la instrucción y las evaluaciones de esos grupos. Estos se trataron de la misma forma en lo relacionado al ritmo de las prácticas de enseñanza y a los materiales curriculares utilizados. Es decir todos los grupos se trataron de la misma forma.

Las prácticas de enseñanza de algunos maestros no promovieron diferentes niveles de retos. Se asignaba material fácil al estudiante y el maestro daba a entender que el estudiante avanzado tenía que ponerse sus propios retos. Algunos informaron que las quejas de los padres no favorecían que se asignara tareas según las capacidades del estudiante. Otros maestros le requerían al estudiante que tenía que seguir paso a paso la clase tal y como la dictaba el maestro. Un ejemplo al respecto, fue un maestro que asignó una lectura y dio instrucciones a los estudiantes para que leyeran hasta ciertas páginas, porque él era el que determinaba cuando se proseguía hacia adelante en la lectura. Estos ejemplos de un maestro que cree que la equidad y justicia para el estudiante significa que todos hacen lo mismo de la misma forma.

Factores asociados al programa de desarrollo profesional. Los factores asociados al programa de desarrollo profesional tienen que ver con las características en su diseño, la organización, el instructor y los métodos y estrategias que se utilizan para desarrollar los temas (Ottoson, 1997). Es imprescindible que los instructores tengan alto dominio de los conocimientos a ser enseñados como también un conocimiento del contexto en el cual se desempeñan los participantes. Los mismos además, deben establecer tiempo para actividades
más allá del programa. Vetter (2012) propuso que debe promoverse un aprendizaje sostenido que permita tiempo para practicar lo aprendido y ofrecer retroalimentación en torno a cómo se está implementando el nuevo aprendizaje. Añade además, que el maestro debe tener oportunidades para reflexionar, de tal forma que identifique aquellas prácticas que debe mejorar, y para entender los beneficios y limitaciones del cambio.

Middleton (1999) presentó evidencia de un programa de desarrollo profesional cuyo diseño fortaleció el cambio en las prácticas del maestro. Este programa proveyó oportunidades para que los maestros expandieran sus creencias hacia la reforma de matemáticas basada en el desarrollo de conceptos y la solución de problemas. En el mismo los maestros se capacitaron en un nuevo modelo curricular diferente al tradicional que respondía a los requerimientos de la reforma. Los resultados reflejaron cambio en las prácticas que promovieron el profundo pensamiento del estudiante. Estas prácticas enfocaron en una diversidad de estrategias para desarrollar los conceptos de matemáticas y resolver problemas, en una planificación más dirigida hacia el desarrollo del razonamiento del estudiante y la utilización de avalúos. El diseño del desarrollo profesional tenía varios elementos. Como primer paso, en el diseño se observaron clases y se entrevistó a los maestros participantes antes de que estos se involucrarían con el nuevo currículo. Luego los maestros recibieron cuatro mediodías de desarrollo profesional durante el otoño donde se introdujeron los nuevos materiales curriculares. En estos talleres los maestros en equipo, trabajaron actividades con los materiales curriculares, reflexionaron sobre su práctica y planificaron para la enseñanza futura. Nuevamente, en primavera los maestros tuvieron otra adiestramiento profesional para reflexionar sobre los éxitos alcanzados, sus frustraciones y para compartir estrategias. Hubo un coach que colaboró con el maestro en la sala de clases. El autor
resume que las oportunidades de desarrollo profesional dentro de las escuelas promovieron la reflexión crítica y pudo materializarse el cambio.

Hay programas que aunque el diseño tenga los componentes que puedan calificar un programa de desarrollo profesional efectivo, no siempre alcanza los objetivos que se proponen. Obara y Sloan (2009) muestran evidencia de lo antes expresado. En su investigación examinaron las experiencias de tres maestros implantado un nuevo currículo de matemáticas que daba énfasis a los estándares de proceso de resolver problemas, de representación, conexiones y comunicación. El mismo proveyó cinco días de nueve horas por día (45 minutos) en un instituto de verano donde los maestros exploraron el contenido y nuevas estrategias. También hubo seguimiento durante el año escolar a través de la participación de un coach que se reunía con los maestros semanalmente para reflexionar sobre las prácticas y colaborar en la integración de los nuevos materiales curriculares a la sala de clases. Este programa consideró aportaciones del maestro para preparar la agenda y para seleccionar los materiales.

A pesar de estos esfuerzos los logros fueron mínimos. Las reuniones semanales del coach con los maestros para reflexionar sobre la práctica se fueron degenerando hasta convertirse en espacios de planificación conjunta. El nuevo currículo ayudó a que los maestros se dieran cuenta que el mayor foco de la enseñanza debe ser el desarrollo de conceptos. Sin embargo, los datos reflejaron que los maestros continuaban enseñando a base de reglas y procedimientos.

Estos hallazgos sugieren que al considerar el cambio es necesario proveer suficiente tiempo y recursos adecuados, tanto del coach como de los materiales curriculares, para que el maestro entienda los enfoques de la reforma, pueda reflexionar sobre su práctica y trate nuevos enfoques (Bray, 2011; Obara & Sloan, 2009). El cambio en las prácticas del maestro requiere
consistencia entre éstas y sus creencias y depende de las oportunidades que se le ofrezcan para reflexionar sobre sus acciones en compañía de colegas de apoyo (Clarke, 1997). Por esas razones es que Obara y Sloan (2009) expresan que “cambiar el currículo es cambiar individuos” (p.363).

Factores asociados al contexto escolar. Los factores asociados al contexto escolar incluyen, el tipo de liderazgo escolar, coherencia entre los temas de los talleres y los esfuerzos de reforma adoptados por la escuela, si hay o no movimientos de comunidades de aprendizaje, las condiciones de trabajo del maestro (Smith & Gillespie, 2007), la disponibilidad de recursos para apoyar el cambio, la autoridad y oportunidad que se le provee al maestro para actuar y el apoyo que recibe de colegas y de la administración escolar (Ottoson, 1997). Ambos grupos de factores deben estar presentes al diseñar e implantar programas de desarrollo profesional que provoquen el aprendizaje del maestro.

Al respecto, Clarke (1997) identificó 12 factores que influyeron en el proceso de cambio de dos maestros que estaban implantando una unidad innovadora de matemáticas, donde se observa que la mayoría corresponde al contexto escolar. Los mismos son los siguientes: (a) movimiento de reforma en general, (b) principal y comunidad escolar, (c) materiales innovadores curriculares, (d) espíritu de colegialidad, (e) colaboración y experimentación, (f) nivel de grado de equipo, (g) programa en servicio, (h) personal de apoyo externo, (i) el investigador como audiencia y amigo crítico, (j) resultados valorados por los maestros, (k) condiciones diarias del trabajo y (l) conocimiento del maestro.

Avalúo del aprendizaje. La reforma de matemáticas basada en estándares establece el avalúo como herramienta clave para mejorar la enseñanza. El avalúo provee datos acerca de la efectividad del currículo y la enseñanza tanto en el nivel de la escuela como en el del salón de
clases (California Department of Education, 2012). A nivel de escuela se administran pruebas para determinar si los diferentes subgrupos que componen la comunidad de estudiantes progresan en forma significativa. En el nivel del salón de clases los datos del avalúo proporcionan información acerca del conocimiento que está alcanzando el estudiante. El análisis de los datos permite tomar decisiones informadas para identificar e implantar intervenciones con el propósito de mejorar el aprendizaje de todos los estudiantes de un núcleo escolar.

Hay una variedad de avalúos que apoyan diferentes propósitos. Algunos son necesarios para diagnosticar el aprendizaje del estudiante antes de comenzar un curso o un tema, otros para mejorar la enseñanza, o para evaluar el aprendizaje del estudiante una vez ha finalizado un curso. El DEPR ha requerido el componente de avalúo en la planificación de la lección diaria (DEPR, 2013) para apoyar el mejoramiento del proceso enseñanza y aprendizaje. En cada plan tiene que identificarse el o los estándares a ser trabajados y las actividades de avalúo correspondientes. Para cada objetivo debe especificarse el avalúo con sus indicadores de logro. En la educación basada en estándares los maestros utilizan una variedad de avalúos a través de todo el año escolar. Las aseveraciones anteriores evidencian la importancia que el DEPR ha dado al avalúo continuo para el mejoramiento de la enseñanza y como consecuencia del aprendizaje de los estudiantes.

Los esfuerzos para mejorar el proceso enseñanza y aprendizaje requieren que el maestro domine el proceso de avalúo (Stiggins, 1995). Ese tipo de avalúo dirigido a recopilar información para mejorar tanto la enseñanza como el aprendizaje del estudiante se conoce como evaluación formativa. Se refiere a todos los procedimientos formales e informales que el maestro emplea en un esfuerzo para hacer inferencias certeras acerca de lo que el estudiante conoce y puede hacer (Popham, 2009). El mismo tiene una orientación hacia el mejoramiento porque la
evidencia recopilada, es utilizada por el maestro para ajustar las actividades de enseñanza y el estudiante para ajustar las formas en las que está tratando de aprender algo (Popham, 2009).

El avalúo, además debe involucrar al maestro en cambios pedagógicos que demanden altos niveles intelectuales en su quehacer diario. De ser así el maestro estará implantando lo que se conoce como avalúo auténtico (Koh, 2011). Este avalúo enfatiza la construcción del conocimiento, el pensamiento complejo, la comunicación elaborada y la colaboración y solución de problemas en contextos auténticos. Para que el maestro pueda implantar el avalúo auténtico tiene que desarrollar un gran dominio en el avalúo.

De acuerdo a Stiggins (1995) el dominio en el avalúo está definida por cinco estándares de calidad. El primer estándar es el establecimiento de propósitos claros. En el nivel del salón de clases el maestro puede identificar diferentes necesidades que incluyen las necesidades del estudiante a nivel individual, las de todo el grupo, las de subgrupos de estudiantes, la evaluación de la enseñanza y la evaluación de él como maestro. El maestro que entiende el avalúo puede seleccionar en forma apropiada el que corresponde al propósito que se ha establecido. Diferentes propósitos requieren diferentes tipos de avalúos.

El segundo estándar de calidad establece un enfoque en los objetivos de rendimiento. Stiggins (2005) establece cinco objetivos de logros: (a) dominio del contenido de conocimiento, (b) desarrollo proficiente del razonamiento, (c) lograr destrezas de ejecución, (d) desarrollar productos de alta calidad y (e) la formación del carácter. El conocimiento del contenido es el fundamento para alcanzar los demás objetivos. Hay que conocerlo y comprenderlo. Hay que saber cómo encontrarlo en la memoria cuando se necesita. Otro objetivo de logro es el desarrollo proficiente del razonamiento. Una vez se tiene el conocimiento este se usa para razonar. El maestro ayuda al estudiante a razonar en forma efectiva. Para organizar el
raza
tamiento Stiggins (2005) sugiere atender las destrezas de análisis, síntesis, razonamiento comparativo, clasificación, razonamiento inductivo, razonamiento deductivo y evaluación. La planificación para el logro de destrezas de ejecución provee para el desarrollo de la habilidad del estudiante para ejecutar o comportarse en cierta forma. Como ejemplos se puede mencionar, la fluidez en la lectura oral, la ejecución en actividades de grupos cooperativos, la manipulación de la calculadora científica, o el dominio de un segundo idioma. Los objetivos dirigidos a la capacidad para crear productos desarrollan destrezas para crear productos que demuestren estándares de calidad. Como ejemplos, se puede mencionar: (a) una monografía para determinar competencia en la escritura, (b) reparar una computadora, (c) crear un modelo matemático o (d) un trabajo de arte. Por último, los objetivos dirigidos a la formación del carácter tienen que ver con lo afectivo y los sentimientos personales. Se incluyen las actitudes, la autoconfianza y la motivación.

El dominio en el avalúo requiere que el maestro pueda seleccionar entre varios métodos, el apropiado para que el estudiante alcance el logro que se ha determinado. Stiggins (2005) establece cuatro categorías de métodos para el avalúo: (a) avalúo para seleccionar la respuesta, (b) avalúo de respuesta extensa o de ensayo, (c) avalúo para la evaluación del desempeño y (d) el avalúo de comunicación personal. No todos los métodos de avalúos son apropiados para alcanzar el logro que se ha propuesto. Por tal razón, unas opciones de métodos de avalúo favorecen más una alineación con unos objetivos que con otros.

En el avalúo para seleccionar la respuesta se incluyen pruebas de selección múltiple, de cierto o falso, de pareo y de llenar blancos. Las mismas son útiles para evaluar el conocimiento y el razonamiento. Para evaluar el carácter una de las técnicas a usarse es el cuestionario y las escalas de actitudes.
En el avalúo de respuesta extendida (tipo ensayo) el estudiante contesta ejercicios escritos que requieren la creación de un texto original que el maestro evalúa de acuerdo a unos criterios ya establecidos, los cuales conoce el estudiante. El maestro con dominio del avalúo puede determinar si este método realmente es apropiado para evaluar el objetivo que él ha establecido, y si el proceso de otorgar puntuación a la respuesta es imparcial. Es necesario que el maestro establezca expectativas de ejecución especificando las soluciones aceptables al problema presentado. Estas expectativas se transforman en las guías de puntuaciones para el ejercicio. Las técnicas de avalúo más apropiadas a la disposición del maestro para evaluar los ensayos o preguntas de respuesta extensa son las listas de cotejo y la rúbrica. Es importante que el estudiante reciba retroalimentación de su ejecución.

El avalúo para el desempeño involucra al estudiante en actividades donde demuestra destrezas para crear un producto con ciertos estándares de calidad. Se compara la ejecución del estudiante con niveles de competencia determinados; esto para evitar la parcialidad. La rúbrica y el portafolio son técnicas de avalúo apropiadas para evaluar la ejecución del desempeño. Las rúbricas deben ser amigables al estudiante. Se definen a base de escalas que describen los niveles de ejecución del estudiante en la destreza, competencia o área evaluada. La comunicación personal como avalúo le permite al maestro recoger información valiosa de la interacción que se da en la sala de clases. La comunicación interpersonal se da a través de las preguntas y respuestas que se desarrollan durante la enseñanza, en las conferencias, en las contribuciones que hacen los estudiantes mientras se desarrolla el proceso enseñanza y aprendizaje, en los escritos, los diarios y sus expresiones orales. Este método tiene el poder de monitorear y ajustar la enseñanza ya que se hacen preguntas de seguimiento para profundizar en el pensamiento del estudiante. El maestro necesita identificar diseños apropiados para recoger la
información y evaluarla. Las técnicas de la comunicación personal como avalúo más utilizadas son las preguntas y respuestas, las entrevistas y conferencias, las pruebas orales y los diarios de reflexión.

En la Formación del carácter se incluyen las actitudes, motivaciones e intereses de los estudiantes. Las tareas del avalúo tienen como propósito identificar información relacionada con los sentimientos del estudiante hacia la escuela; si son negativos o positivos y cuál es la intensidad de los mismos. El avalúo del carácter ayuda a identificar información acerca de la ética, la motivación, los intereses, las actitudes, los valores relacionados con la escuela, la eficacia académica, las aspiraciones académicas y el auto concepto del estudiante. Las opciones disponibles para evaluar la formación del carácter incluyen cuestionarios de respuesta seleccionada y preguntas abiertas, hoja de observaciones y la entrevista. En la tabla 1 se identifican con una X las mejores opciones de métodos de avalúo que tiene el maestro a su disposición para evaluar los diferentes objetivos.

El muestreo de rendimiento de los estudiantes es el cuarto estándar de calidad del avalúo. El avalúo que realiza el maestro es una muestra representativa de todas las posibles preguntas que se podrían hacer. La forma del muestreo del logro del estudiante depende de varios factores. Uno, es el método de avalúo que se ha seleccionado. El muestreo de todas las posibilidades permite que un estudiante que contestó un por ciento de ejercicios correctos en una prueba diseñada por el maestro, pueda obtener el mismo porcentaje de aciertos en todas las posibles preguntas que pudieron plantearse. La muestra apropiada también depende del alcance del objetivo. A mayor alcance, la muestra será más amplia. Para evaluar cuán proficientes son los estudiantes de tercer grado resolviendo problemas de suma, se necesitan menos ejercicios que si se fuera a evaluar cuán proficiente es un estudiante del nivel superior.
Tabla 1

Alineación de los objetivos de logros y los métodos más apropiados para el avalúo (Stiggins, 2005)

<table>
<thead>
<tr>
<th>Objetivos de:</th>
<th>Métodos de Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Seleccionar la Respuesta</td>
</tr>
<tr>
<td>Conocimiento</td>
<td>X</td>
</tr>
<tr>
<td>Razonamiento</td>
<td>X</td>
</tr>
<tr>
<td>Destrezas de Ejecución</td>
<td></td>
</tr>
<tr>
<td>Producto</td>
<td></td>
</tr>
<tr>
<td>Formación del Carácter</td>
<td>X</td>
</tr>
</tbody>
</table>

El maestro que desarrolla dominio en el avalúo evita el sesgo y la distorsión en la evaluación del logro que ha tenido el estudiante. La naturaleza de la distorsión puede deberse a varios factores. Hay situaciones del estudiante que pueden interferir, tales como la salud o estado emocional, entre otros. Medir e forma incorrecta el logro puede deberse a problemas asociados al ambiente donde se lleva a cabo el avalúo, tales como distractores o incomodidades. A veces la mala representación del avalúo ocurre del diseño del propio instrumento que se utiliza para medir el logro, a causa de la construcción de las preguntas, o de las puntuaciones otorgadas al trabajo realizado por el estudiante.

La información obtenida de la literatura revisada estableció el marco de referencia para el diseño de la investigación. Los diferentes enfoques que se ha dado a la enseñanza de las
matemáticas hasta llegar a la era de los estándares, el conocimiento sobre los programas de capacitación profesional del maestro, y el avalúo, aportaron conocimientos valiosos para el diseño de los instrumentos que se utilizaron en la recolección de datos. Los mismos, además apoyan el análisis de las contestaciones de las preguntas de investigación. La información recopilada sobre la enseñanza de las matemáticas, el conocimiento del contenido para la enseñanza de las matemáticas y el avalúo, permitieron que la investigadora estableciera una descripción sobre las acciones que deben permear en un salón de clases donde se enseña bajo la reforma de los estándares y las matemáticas con entendimiento. La información sobre el desarrollo profesional facilitó la selección del programa bajo estudio y fortaleció la identificación de los elementos de este programa que apoyaron el aprendizaje del maestro.

Marco metodológico

El foco de esta investigación fue explorar, describir y entender las aportaciones de un modelo de desarrollo profesional en el conocimiento de contenido para la enseñanza de las matemáticas en el nivel de cuarto al sexto grado. Se consideró pertinente identificar en el marco metodológico investigaciones que abordan dos grandes temas: la enseñanza de las matemáticas y el desarrollo profesional. En ambos se incluyeron investigaciones que utilizaron el método de investigación cualitativo, el cuantitativo y el mixto.

En el tema de la enseñanza de las matemáticas se identificaron estudios que aportan al conocimiento de prácticas de enseñanza efectivas que promueven en el estudiante el entendimiento de las matemáticas. En el tema de desarrollo profesional se expusieron investigaciones que aportan al conocimiento de programas de capacitación que promueven el cambio y el aprendizaje del maestro. Las mismas sirvieron de referencia a la investigación que se llevó a cabo para analizar los hallazgos. Por otro lado, los conocimientos obtenidos en la
revisión de la literatura proveyeron información acerca de los enfoques que se han utilizado en el diseño de investigaciones sobre estos dos amplios temas. Asimismo, a través de la investigación que se realizó, se aportó al conocimiento sobre diseños para el estudio del desarrollo profesional del maestro de matemáticas del nivel de cuarto al sexto grado.

Investigaciones con enfoque en la enseñanza de las matemáticas.

Metodología cualitativa. Obara y Sloam (2009) utilizaron la metodología de estudio cualitativo para investigar sobre las experiencias de tres maestros de sexto grado y su coach de matemáticas mientras trabajaban con nuevos materiales durante la implantación de un nuevo currículo basado en estándares auspiciado por la NSF. El nuevo currículo estaba dando énfasis a la resolución de problemas, las representaciones, las conexiones y la comunicación. Estos estándares enfatizan el uso de manipulativos, el trabajo en grupo, la tecnología y el enfoque integrado en la enseñanza de álgebra, numeración, geometría y estadísticas.

Los tres maestros participaron de un instituto de verano por cinco días en actividades del nuevo currículo. El desarrollo profesional continuó en la escuela a través de reuniones lideradas por un coach de matemáticas. En esas reuniones se hablaba sobre estrategias, discutían sobre trabajos de los estudiantes y actividades que habían implantado en la sala de clases.

Para recoger los datos se utilizaron las entrevistas. La primera entrevista se llevó a cabo una vez finalizado el instituto de desarrollo profesional con el propósito de explorar las experiencias vividas y sus reacciones al material. Se vuelven a entrevistar tres semanas luego enfocando las preguntas en el sistema de accountability del distrito y la forma en que este podría impactar la práctica en la sala de clases del maestro. En la tercera ronda de entrevistas al finalizar el semestre, se enfocaron las formas en que se utilizó el nuevo currículo al implantar los nuevos estándares. Las notas en las observaciones de clases fueron otra fuente de colección de
datos. Las notas y videos en las sesiones de desarrollo profesional, así como otros artefactos, tales como trabajos de los estudiantes y notas de enseñanza de los maestros sirvieron como instrumentos para recopilar la evidencia necesaria para hacer el análisis y contestar las preguntas de investigación.

En el análisis de datos se desarrolló un esquema de codificación relacionado con el maestro y los materiales curriculares. Para trabajar las categorías en las entrevistas se utilizó el método comparativo constante de análisis inductivo. Se triangularon los datos transcritos con las observaciones de clases y los videos del desarrollo profesional llevado a cabo en la escuela.

Los hallazgos reflejaron que los maestros recurrieron a suplantar y sustituir materiales del proyecto por otros que habían utilizado en años previos. Al finalizar el semestre la enseñanza se basó en una combinación de los viejos textos y de materiales del nuevo currículo. Los resultados sugirieron que los maestros continuaron enseñando principalmente con reglas y procedimientos, esto es, enseñado diciendo. Según el autor, cambiar las prácticas requiere tiempo y el cambio debe ser estimulado y apoyado. Señala además, la importancia de proveer suficiente tiempo que permitan la comprensión de los nuevos estándares.

Drake y Sherin (2006) reclamaron que la identidad del maestro como aprendiz y como maestro de matemáticas influían en la forma en que usaba y adaptaba el currículo orientado en la reforma. Ellos diseñaron una investigación con la metodología cualitativa de narrativas de historias con el objetivo de obtener información al respecto. El propósito era observar cómo los maestros incorporaban los principios de un currículo de matemáticas basado en estándares en sus prácticas de enseñanza.

En la muestra participaron voluntariamente dos maestras del nivel elemental, que estaban probando un nuevo currículo de matemáticas alineado a la reforma de los estándares propuesta...
por la NCTM. Las maestras enseñaban en primer y segundo grado. Cada una recibió todos los materiales necesarios para implantar el nuevo currículo. Las observaciones de clases y la capacitación profesional provista por el investigador se hicieron simultáneamente con la implantación de las lecciones educativas. Se llevaron a cabo entrevistas donde el maestro narraba en forma de historias sus experiencias de aprendizaje y de enseñanza de las matemáticas.

En el análisis se los datos se codificaron las adaptaciones identificadas en las lecciones. Se compararon las notas de las observaciones de clases con las descripciones de la lección en la guía del maestro para determinar las adaptaciones. También se codificaron las narrativas de las historias de las matemáticas para determinar creencias en el aprendizaje y en la enseñanza de las matemáticas.

Los resultados revelaron que el maestro tiende a ver su enseñanza a través del lente de sus experiencias como estudiante. En la investigación se observó que las interpretaciones que el maestro le daba a sus experiencias tempranas con las matemáticas fueron reflejadas en los patrones de adaptación que hizo al currículo. Las experiencias de matemáticas que tuvo una de las maestras le dejaron ver lo que las matemáticas no debían ser.

El estudio que presentó Middleton (1999) fue una continuación de una investigación previa. La misma se realizó para examinar las creencias de unos maestros de la escuela intermedia (middle school) con relación a los factores que hacían que las matemáticas que ellos enseñaban fueran intrínsecamente motivadoras, y la relación que se establece entre sus constructos personales, sus prácticas de enseñanza y los constructos de motivación de sus estudiantes. Dos de los maestros que participaron en el viejo estudio constituyeron la muestra del nuevo, diseñado con el propósito de brindarle oportunidades adicionales de ampliar sus creencias. Los dos maestros enseñaban en el séptimo y octavo grado. Ellos fueron los únicos
que habían continuado enseñando matemáticas en el año siguiente al primer estudio realizado. Cada uno implantaba durante a cuatro cinco semanas unidades curriculares organizadas alrededor de un contexto que incorporaba los conceptos de matemáticas a ser enseñados.

Para recopilar los datos se observaron y video grabaron clases durante la implantación de las unidades curriculares. Los maestros fueron entrevistados luego de cada observación de clases. En las entrevistas se buscaba información relacionada con los aspectos que el estudiante encontró interesante, con lo más difícil de enseñar, con la forma en que la unidad de enseñanza permitió atender las diferencias individuales y la forma en que la unidad afectó al maestro.

Luego de las observaciones y entrevistas iniciales los maestros participaron de actividades de desarrollo profesional durante el otoño, donde e introdujeron los materiales del nuevo currículo. Se desarrollaron sesiones de solución de problemas, trabajaron juntos problemas de las unidades, reflexionaron sobre la práctica e hicieron planes de clases para la enseñanza futura. En primavera volvieron a participar de un adiestramiento para reflexionar sobre sus frustraciones y éxitos y compartir estrategias de enseñanza. El investigador estuvo en la sala de clases colaborando con los maestros.

El análisis de los datos se hizo siguiendo la técnica de agrupamiento aditivo (additive clustering). Los hallazgos informaron que las prácticas de los maestros cambiaron drásticamente. Al utilizar el nuevo currículo los maestros respondieron mejor al estudiante y las clases involucraban mayor discusión. Los maestros reportaron que los estudiantes empezaron a pensar en forma más profunda, mostrando mayor perseverancia cuando trabajaban con materiales de alta dificultad. Los cambios en las prácticas más relevantes fueron: (a) foco en una variedad de estrategias para resolver problemas y desarrollar conceptos, (b) la planificación
dedica más tiempo al razonamiento del estudiante y (c) el desarrollo de un proyecto final de
avalúo que integró los conceptos de matemáticas.

El estudio de Clarke (1997) utilizó la metodología de estudio de caso para investigar el
cambio del maestro asociado con el uso de materiales de enseñanza innovadores en sexto grado.
Usó como referencia la relación de las creencias del maestro sobre la enseñanza y el aprendizaje
de las matemáticas, y las prácticas que este ejecutaba en la sala de clases. Como primer paso,
identificó a través de la revisión de la literatura aquellos componentes de un salón donde se
enseña con enfoque orientado en la reforma y las creencias relacionadas con cada uno de esos
componentes. Las mismas sirvieron de marco conceptual para la investigación.

A las dos maestras de sexto grado que participaron en el estudio se les proveyó desarrollo
profesional cuya meta era establecer conexiones entre los conocimientos del estudiante y
diferentes dominios de las matemáticas. Se esperaba que el estudiante aprendiera a realizar
conexiones entre las matemáticas de la sala de clases y con otros contextos fuera del salón, entre
conocimiento conceptual y de procedimientos, y de las matemáticas con otras áreas curriculares.
El desarrollo del programa era de cuatro sesiones, dos antes de enseñar la primera unidad y dos
que fueron planificadas para ofrecerlas en el punto medio y la concusión de la unidad de la
enseñanza. Se ofreció apoyo a las maestras a través de vistas semanales de un miembro del
proyecto.

Las observaciones de clases sirvieron para recopilar datos. Las mismas se hicieron en las
sesiones de desarrollo profesional donde participaron las maestras, y en las reuniones de equipos
de maestros. Se hicieron entrevistas, tanto a un miembro del personal del proyecto de desarrollo
profesional y a un coordinador de matemáticas, debido a que ambos estaban dando apoyo a la
escuela.
Los resultados reflejaron que hubo poco cambio en los participantes. Los mismos fueron graduales. Uno de los cambios fue el aumento en comodidad de un maestro planteando problemas y permitiendo que los estudiantes trataran de resolverlos en colaboración de equipo, sin ninguna aportación del maestro. Otro cambio significativo, fue el proveer oportunidades para que los estudiantes reflexionaran en las actividades planificadas para la sala de clases. El autor concluye que la consistencia entre las creencias y prácticas del maestro depende de las tendencias y oportunidades de reflexión sobre sus acciones en compañía de colegas de apoyo.

Metodología cuantitativa. Stipek et al. (2001) investigaron la asociación entre las creencias del maestro y la enseñanza en la sala de clases. A través de cuestionarios con escalas tipo Likert recopilaron datos para el estudio. El cuestionario sobre Creencias Acerca de las Matemáticas y la Enseñanza se administró a 21 maestros que enseñaban en los grados de cuarto al sexto.

El objetivo era medir la fortaleza del acuerdo de los maestros con cada uno de 57 ítems que correspondían a siete dimensiones de creencias. Las dimensiones evaluadas en el cuestionario fueron las siguientes: (a) las matemáticas como conjunto de operaciones versus una herramienta para el pensamiento, (b) la meta principal constituye obtener la respuesta correcta o el entendimiento, (c) control del maestro versus autonomía del estudiante, (d) la identidad del estudiante versus el aumento de su habilidad intelectual, (e) motivación intrínseca versus extrínseca, (f) la seguridad del maestro en la enseñanza de matemáticas y (g) el disfrute del maestro cuando enseña las matemáticas.

Se administró una escala Likert durante las observaciones de clases de los maestros para medir las prácticas de enseñanza. Estas observaciones de clases fueron grabadas. El diseño de la escala estuvo basado en una descripción detallada de las prácticas relacionadas con cada una de
las dimensiones identificadas para el estudio. Se observó el grado en que el maestro enfatizó los resultados en el desempeño, el grado que enfatizó la velocidad de la tarea, el tipo de ambiente que fomentó, las oportunidades que proveyó para crear autonomía en el estudiante, el énfasis para crear el esfuerzo del estudiante, hasta dónde enfocaba el entendimiento y el dominio, y el nivel de entusiasmo e interés que este demostraba en la enseñanza de las matemáticas.

Se administró otro cuestionario a los estudiantes de los maestros que participaron del estudio para determinar cómo estos median sus competencias y cuánto disfrutaban en la clase de matemáticas. El mismo se construyó a base de una escala Likert. Este contenía tres preguntas para analizar la autopercepción sobre su habilidad matemáticas y tres adicionales para evaluar su grado de disfrute en el salón de matemáticas.

El análisis de los datos a través del coeficiente de correlación se utilizó para determinar la coherencia entre las creencias del maestro y las asociaciones entre las creencias y las prácticas en la sala de clases. Se encontró una sustancial coherencia entre las creencias del maestro. Los hallazgos además reflejaron consistencia entre las creencias y las prácticas educativas. La autoconfianza el maestro en las matemáticas fue significativamente asociada con la autoconfianza del estudiante como aprendiz de matemáticas.

Chu, Yang, Tseng y Yang (2014) hicieron un estudio cuasi experimental para evaluar la efectividad de un sistema de tutorías conocido como Model-Tracing Intelligent Tutor (MTI). Dicho sistema diagnostica problemas de aprendizaje y ofrece retroalimentación en forma individual para cada estudiante. Este programa no enfatiza una sola estrategia para abordar un problema de matemáticas, sino que considera las estrategias que utiliza el estudiante para determinar la solución.
El diseño cuasi experimental distribuyó al azar 124 estudiantes de quinto grado en el grupo experimental y el de control, ambos de 62 estudiantes cada uno. Cada uno de los grupos recibió la enseñanza bajo las mismas condiciones. El tema bajo estudio fue el cálculo con fracciones. El grupo experimental utilizó el programa MTI y el de control una prueba en la web donde el estudiante contestaba el problema y recibía notificación de correcto o incorrecto. En cambio, el MTI hacía un análisis de la respuesta del estudiante y le informaba al respecto.

Una pre y post prueba administrada a cada estudiante sirvió para recoger los datos y determinar los logros. El análisis se hizo con la prueba t para muestras independientes. Los resultados de la prueba t para la pre prueba demostraron que no había diferencias en los promedios de las puntuaciones para cada uno de los grupos. En cambio, la prueba t para para la post prueba fue significativamente diferente, implicando que los estudiantes del grupo experimental ejecutaron mejor en la prueba de aprovechamiento acerca del tema de fracciones. Se concluyó que el modelo de tutoría MTI que diagnostica el aprendizaje y provee retroalimentación a las contestaciones de los estudiantes participantes fue más efectivo en el desarrollo del entendimiento sobre las fracciones.

Liaoning, Yu-jing, Qiong y Wingling (2012) estudian el impacto de una reforma curricular en China en las prácticas educativas en la sala de clases. Esta reforma fue lanzada para el 2005 y estaba basada en nuevos estándares curriculares que enfatizaban la conexión de las matemáticas con situaciones de vida real. Los participantes fueron 584 maestros distribuidos en dos grupos. Un grupo trabajaba en escuelas donde se estaba aplicando la reforma y el otro en escuelas que usaban el currículo convencional. Ambos grupos provenían de escuelas comparables.
La escala *The Survey of Mathematics Instructional Practice in California* se utilizó como instrumento para recopilar los datos. La misma tiene 12 escalas, de las cuales siete están identificadas con prácticas centradas en el maestro y las demás están asociadas a la reforma. El cuestionario fue sometido a un análisis de factor. A través de dicho análisis se identificaron los siguientes factores: (a) formas de aprendizaje a través de memoria o ejercicios, (b) autoaprendizaje más allá del salón de clases, (c) enfoque de enseñanza de resolución de problemas, (d) actividades en la sala de clases caracterizadas por conferencias centradas en el maestro, (e) formas de aprender a través de conexiones matemáticas y situaciones de vida real, y (f) tipo de trabajo que el maestro asigna para realizar en el hogar.

Los hallazgos reflejados a través del análisis multivariado de la varianza (MANOVA) indicaron que los maestros que usaron el currículo de la reforma tenían mayor probabilidad de implantar durante la enseñanza discusiones de grupos, manipulativos y una variedad de assessment. En cambio, los maestros que utilizaron el currículo convencional se inclinaban a asignar ejercicios, proveer tareas de aprendizaje no rutinarias y a la administración de pruebas de contestaciones cortas.

El estudio llevado a cabo por Polly, McGee, Wang, Lambert, Pugalee y Johnson (2013) tuvo el interés de explorar la relación entre las prácticas de enseñanza de los maestros, sus creencias hacia la enseñanza de las matemáticas y los resultados del aprendizaje de los estudiantes. Los participantes fueron maestros de los grados kindergarten al quinto, que participaron de desarrollo profesional enfocado en la reforma de los estándares. Además se incluyeron estudiantes que estaban matriculados en las clases de los maestros participantes.

Los datos se recopilaron con varios cuestionarios. Un cuestionario investigó sobre las creencias del maestro, otro sobre las prácticas de enseñanza de los maestros, y otros dos
estuvieron relacionados con el conocimiento matemático para la evaluación de la enseñanza y el conocimiento del contenido matemático del maestro y el de sus estudiantes. Los estudiantes participantes contestaron una pre y post sobre una unidad de estudios titulada Investigaciones en números, datos y espacios.

El análisis se hizo con la prueba t de muestras independientes para determinar si había diferencias significativas entre las prácticas del maestro con sus creencias sobre la enseñanza de las matemáticas. Un análisis de varianza se utilizó para determinar si existían diferencias entre los distritos escolares a los que pertenecían los estudiantes como también entre grados utilizando los resultados de la pre y post administrada al inicio y finalizar la unidad de enseñanza.

Los resultados obtenidos reflejaron que los maestros con orientación en la enseñanza usaban frecuentemente prácticas centradas en el maestro, más que aquellos que tenía una orientación de descubrimiento y conexionista en la enseñanza. Similarmente en los que prevalecía una orientación hacia el aprendizaje también usaron frecuentemente prácticas centradas en el maestro, más que los que tenían una orientación de descubrimiento y conexionista en el aprendizaje. También los datos reflejaron que los estudiantes en salones con alto grado de orientación en la transmisión tuvieron significativamente menos ganancia en las puntuaciones de las pruebas en el currículo basado en assessment. Al considerar los grados y distritos, hubo diferencias en las ganancias entre grados en un distrito, pero no así en el otro.

Metodología de métodos mixtos. Boston (2012) utilizó un grupo de rúbricas contenidas en un cuestionario titulado Instructional Quality Assessment (IQA) Mathematics Toolkit para examinar la calidad de la enseñanza de un grupo de maestros que enseñaban en el nivel intermedio (middle school). Este instrumento provee para el análisis tanto de datos cuantitativos como cualitativos que se obtienen de las observaciones de clases y de la colección de artefactos
que utiliza el maestro para proveer la enseñanza. En esta investigación dicho cuestionario se utilizó para identificar dimensiones de la enseñanza efectiva de las matemáticas a través de (a) observaciones de clases y del análisis de (b) trabajos escritos de matemáticas que el maestro asignó a sus estudiantes. El proceso de enseñanza y aprendizaje se evaluó a través del nivel cognitivo de diseño de la tarea para la enseñanza de las matemáticas, las oportunidades que el maestro proveyó para involucrar al estudiante en altos niveles de razonamiento, las oportunidades para que el estudiante explicara su razonamiento matemático tanto en discusiones durante la clase como en las respuestas dadas a los trabajos escritos asignados por sus maestros y las expectativas del maestro para el aprendizaje de sus estudiantes.

En esta investigación participaron 13 maestros que enseñaban en la escuela intermedia (middle school) todos de un mismo distrito escolar. Estos habían participado de un programa de capacitación profesional para promover el desarrollo cognitivo en la enseñanza de las matemáticas. El distrito escolar dio apoyo en la implantación de las lecciones de enseñanza y en el desarrollo de discusiones de clases. Se observaron dos clases por cada maestro participante, donde este tenía que evidenciar los conocimientos adquiridos en el desarrollo profesional.

Además de las observaciones de clases, se le solicitó a cada maestro que entregara cuatro tareas escritas de matemáticas asignadas a sus estudiantes durante la clase o para hacer en el hogar. Cada una de esas tareas tenía que estar acompañada de seis muestras del trabajo realizado por los estudiantes. El maestro tuvo que describir el contenido, detallar tanto las instrucciones que dio a sus estudiantes como los criterios que utilizó para determinar la calidad de la contestación del estudiante.

Los resultados obtenidos en la investigación reflejaron bajas puntuaciones para la mayoría de las observaciones de clases. La mayoría de las tareas que diseñó el maestro y la
implantación de las mismas fueron clasificadas de procedimientos memorísticos, sin establecer conexiones con su significado. La rúbrica para evaluar las expectativas del maestro reflejó que los maestros requirieron bajos niveles de razonamiento para casi todas las lecciones de enseñanza.

En cambio, los resultados del análisis de las tareas escritas de matemáticas que se asignaron reflejaron que la mayoría (80%) promovió una enseñanza de alta calidad tanto para el potencial de la tarea diseñada para la enseñanza como en su implantación. Se evidenció que las tareas escritas asignadas por los maestros proveyeron mayor involucramiento del estudiante en altos niveles del pensamiento que las lecciones de clases observadas. Las respuestas de los estudiantes para las tareas escritas asignadas también reflejaron mayor calidad que aquellas (las respuestas) observadas en las discusiones de clases. También el maestro expresó expectativas de alto nivel más frecuentemente de lo que lo hizo en las lecciones de clases observadas.

Bray (2011) llevó a cabo una investigación de métodos mixtos para observar cómo las creencias y el conocimiento del maestro influían en la forma en que este manejaba el error del estudiante durante la clase de matemáticas. A través del diseño colectivo de estudio de caso investigó la forma en que cuatro maestros que enseñaban matemáticas en tercer grado implantaban un nuevo currículo orientado en la reforma. El investigador además participó como desarrollador de capacitación profesional para la implantación del nuevo currículo.

Los datos se recolectaron a través de observaciones de clases y entrevistas semiestructuradas. Durante las observaciones de clases se tomaron notas y se grabó para capturar los diálogos que se establecieron entre el maestro y los estudiantes. Las entrevistas semiestructuradas se hicieron antes y luego de la observación con el propósito de profundizar en el razonamiento del maestro antes, durante y después de la lección de clases.
La administración de un cuestionario y una entrevista antes y al finalizar el año escolar se utilizó para explorar las creencias y el conocimiento del maestro acerca de las matemáticas. Ambos instrumentos sirvieron para establecer un perfil del maestro en relación a sus creencias y conocimiento. El perfil sirvió de base para diseñar el plan de desarrollo profesional.

Los resultados informaron que la forma en que el maestro manejó el error del estudiante está vinculada a sus creencias y al conocimiento del contenido. Las creencias están asociadas a la forma en que el maestro estructura las discusiones matemáticas. El conocimiento determina la calidad con la cual se maneja el error del estudiante.

La investigación de Pritchard y McDermid (2006) tuvo el propósito de identificar las prácticas que cinco escuelas elementales de Nueva Zelanda habían adoptado para la enseñanza del tema de numeración de matemáticas, como consecuencia de haber participado de un programa de desarrollo profesional. Además, quisieron explorar los factores que contribuyeron o inhibieron el desarrollo del aprendizaje dentro de la escuela.

El estudio utilizó el diseño de investigación en acción. Se recogieron y analizaron datos iniciales para identificar las necesidades de los maestros. Se desarrollaron intervenciones para dar apoyo al líder y a los maestros, de tal forma que se lograra contribuir con prácticas hacia la autosuficiencia escolar. Se recogieron datos a través de entrevistas, discusiones con los maestros, análisis de documentos y de datos del estudiante, y cuestionarios evaluativos por un periodo de 18 meses.

Los resultados reflejaron que las prácticas de enseñanza promovidas en el desarrollo profesional no se habían sostenido una vez finalizada la capacitación profesional. La adquisición del conocimiento de contenido y pedagógico implícitas en el proyecto de desarrollo profesional fueron limitadas. Entre los factores que inhibieron el aprendizaje en la escuela se identificaron la
falta de involucramiento del maestro en el desarrollo profesional inicial, la ausencia del desarrollo profesional inicial y las sesiones subsiguientes para fomentar el crecimiento de las comunidades de aprendizaje y la falta de reflexión sobre la práctica diaria del maestro.

Sowell y Zambo (1997) presentaron los hallazgos obtenidos de un estudio sobre la enseñanza de matemáticas en el estado de Arizona en el contexto de la implantación de la reforma basada en estándares. El estudio examinó de cerca las experiencias del estado en la implantación de cambios en la enseñanza de matemáticas. Tenía el propósito de proveer información valiosa a otros esfuerzos similares de reforma.

En la investigación participaron maestros de matemáticas de los grados K al 12, directores de escuelas elementales y de escuelas intermedias y los jefes de departamentos de matemáticas de 135 escuelas públicas y 42 privadas. Estos fueron seleccionados con una muestra estratificada representativa de las zonas rurales y urbanas y del nivel socioeconómico de las escuelas. Se utilizaron cuestionarios de respuesta abierta y entrevistas para recoger los datos. Las entrevistas se hicieron por teléfono con los que accedieron a formar parte de la investigación, luego de los investigadores comunicarse con un grupo de posibles potenciales participantes.

Para analizar los datos varios investigadores codificaron las respuestas del cuestionario de respuesta abierta. Aquellos temas identificados donde hubo altos acuerdos entre todos los investigadores fueron retenidos para el análisis profundo utilizando procedimientos del programado de computadoras SPSS. A través del cuestionario de preguntas abiertas se investigó sobre los recursos que los maestros utilizaron para guiar el currículo de matemáticas. Las entrevistas proveyeron información acerca de cómo el maestro evaluaba el contenido importante para enseñar, aspectos de la enseñanza de fracciones en el nivel elemental y de la enseñanza de tópicos de álgebra en el nivel secundario.
Los resultados en el nivel elemental reflejaron que pocos maestros incorporaron la enseñanza para el desarrollo del concepto, los maestros explicaron en forma inadecuada su comprensión del contenido al explicar cómo enseñaban un tópico. Concluyen los autores, que hay dudas en relación a la visión que tiene el maestro de matemáticas de Arizona sobre la enseñanza orientada al proceso y al desarrollo del concepto.

Investigaciones con enfoque en el desarrollo profesional.

Metodología cualitativa. Hill (2004) utilizó ocho estándares identificados en la literatura, que están asociados con programas de capacitación profesional de alta calidad para analizar trece sesiones de desarrollo profesional donde participaron maestros de matemáticas del nivel elemental. Estos programas de capacitación tenían como objetivo principal mejorar el conocimiento de contenido de la materia del maestro, el de la pedagogía de las matemáticas y del aprendizaje del estudiante. La investigadora quiso determinar si estos estándares podían discriminar entre programas de alta o baja calidad, de tal forma que facilitaran a los distritos escolares el diseño y la selección de experiencias de desarrollo profesional efectivas.

El diseño de la investigación se desarrolló en tres etapas. Como primer paso la investigadora revisó la literatura sobre desarrollo profesional. Ella pudo identificar ocho estándares de calidad con su definición correspondiente, que fueron recomendados por tres o más autores. Estos incluyeron, aprendizaje activo, colaboración, utilización de ejemplos de la práctica de la sala de clases, modelaje de efectividad por los desarrolladores de la capacitación, oportunidades para la reflexión la práctica y la retroalimentación, foco en el contenido, foco en el aprendizaje del estudiante y la oportunidad al maestro que seleccione la iniciativa donde desee capacitarse. En la segunda etapa se tomaron notas de las observaciones realizadas en trece variadas sesiones de desarrollo profesional que incluían un programa diseñado por el distrito,
cuatro ofrecidos por proveedores independientes, uno ofrecido por un oficial del estado, seis ofrecidos en la conferencia nacional del National Councill of Teachers of Mathematics (NCTM) y un adiestramiento extendido en el verano ofrecido por una institución universitaria.

En la última etapa se compararon las observaciones realizadas con los estándares de alta calidad que se habían identificado en la literatura. Las observaciones identificaban información acerca del contenido discutido en las sesiones y lo que los líderes y maestros hacían o decían. En el análisis se pareó la característica del desarrollo profesional observado con la definición establecida para el estándar.

Los hallazgos reflejaron que las iniciativas de desarrollo profesional que se observaron generalmente se adherían a los estándares de calidad identificados. Las oportunidades de aprendizaje activo, el foco en ejemplos de la práctica de la sala de clases y las oportunidades de colaboración fueron los estándares identificados en la mayoría de las sesiones de desarrollo profesional estudiadas. En cambio, las oportunidades para la reflexión, la práctica y retroalimentación y el modelaje efectivo de la enseñanza por los desarrolladores fueron las menos observadas.

El hallazgo más significativo que planteó la autora fue que algunas de las iniciativas identificadas con el estándar, no eran de calidad. Las mismas eran mediocres al ser evaluadas considerando el contenido, el tratamiento dado a las matemáticas y el aprendizaje del estudiante. En una de las sesiones observadas se alcanzó el estándar de colaboración en forma superficial ya que los maestros pegaban, cortaban o median, pero no discutieron sobre las matemáticas involucradas en la actividad, o en cómo los estudiantes podían aprender las matemáticas. En otra iniciativa en la cual se identificaron seis de los ocho estándares, los maestros pasaron todo un día escribiendo un problema de matemáticas dirigido a que el estudiante escribiera y explicara su
contestación. Este taller tenía el propósito de lograr que el maestro diseñara buenos problemas matemáticos para que el estudiante pudiera redactar y explicar sus respuestas usando el razonamiento matemático. Lamentablemente, ni los líderes ni los maestros pudieron modelar el énfasis en el entendimiento de las matemáticas ya que las respuestas a los problemas enfocaron el procedimiento y en recitar las reglas.

Por el contrario, una de las sesiones que fue identificada en la evaluación con pocos estándares de desarrollo profesional efectivo alcanzó mucha profundidad en el contenido. En este los maestros se sentaron en fila, no hubo manipulativos, no hubo retroalimentación ni práctica. Fue una iniciativa de 2 horas de duración, donde los maestros tuvieron la oportunidad de aprender cómo desarrollar la habilidad para el cómputo mental en el estudiante usando estrategias sensatas con operaciones que tienen de varios dígitos.

La investigación reflejó que aunque varios de los programas parecían efectivos eran inadecuados desde el punto de vista del aprendizaje de las matemáticas. Por tal razón, la investigadora concluye que los estándares de calidad de los programas de desarrollo profesional son inadecuados para clasificar los programas como efectivos o no efectivos. Esto conlleva a que haya una vinculación entre la incapacidad de los estándares para seleccionar buenos programas y la escasez de desarrollo profesional adecuados.

Metodología cuantitativa. Huffman y Laurenz (2003) examinaron la relación entre cinco diferentes formas de programas de capacitación profesional y el logro académico alcanzado por los estudiantes en los cursos de ciencias y matemáticas. Las cinco formas de desarrollo profesional incluían: (a) estrategias de inmersión, (b) implantación del currículo, (c) desarrollo de currículo, (d) examinar prácticas de enseñanza y (e) trabajo colaborativo. El estudio se basó
en una evaluación de programas de la NSF. En la muestra que se seleccionó participaron maestros de octavo grado que enseñaban ciencias o matemáticas.

El estudio utilizó un cuestionario con una escala Likert para medir el punto de vista del maestro (variable dependiente) acerca de cuánto utilizó los métodos de enseñanza descritos en el documento de *National Science Education Standard* y en el NCTM. Los tipos de desarrollo profesional donde participaron los maestros conformaron la variable independiente del estudio. Los resultados de las pruebas de aprovechamiento académico del estado se utilizaron para medir la relación entre el tipo de desarrollo profesional y el logro académico del estudiante. Se determinó la puntuación media de los resultados en matemáticas y en ciencia para los estudiantes que tomaron las clases con los maestros participantes. De este modo se determinó la relación del tipo de desarrollo profesional con el logro académico del estudiante.

Tanto para ciencias y matemáticas se encontró que el tipo de desarrollo profesional que promueve el desarrollo del currículo y la reflexión sobre las prácticas de enseñanza fueron predictores significativos en la enseñanza y en el uso de materiales curriculares basados en estándares. No se encontró relación significativa entre el tipo de desarrollo profesional y el resultado académico del estudiante en la clase de ciencia. Hubo una relación significativa en el desarrollo profesional que se basó en el desarrollo del currículo y el logro del estudiante, pero la misma fue negativa.

sobre proficientes en las pruebas administradas por el estado durante esos años. Las tres variables estudiadas fueron, el aprovechamiento académico representado por el por ciento de estudiantes proficientes o sobre proficientes en las pruebas, la participación del maestro en actividades de MSP (si el 30% de los maestros participaron en 30 o más horas), y si el foco del taller era en matemáticas o ciencias.

Se hizo un análisis longitudinal para comparar escuelas que habían participado de MSP con foco en matemáticas o ciencia, con escuelas que no contemplaron ese foco. Ambos grupos de escuelas se compararon tomando en consideración la dirección del cambio basado en los resultados de estudiantes proficientes durante los 3 años del estudio. Se determinó además, la correlación entre las escuelas donde hubo participación de maestros por tres años en el programa MSP y los resultados proficientes en ciencias y matemáticas. Los resultados reflejaron que las escuelas que tomaron talleres MSP demostraron aumento sostenido en aprovechamiento académico tanto en matemáticas como en ciencia en el nivel elemental y la intermedia, pero no así en el nivel superior.

El estudio experimental que llevaron a cabo Jacobs, Franke, Carpenter y Levi (2007) tuvo como objetivo investigar los efectos del desarrollo profesional sobre el razonamiento algebraico tanto de los maestros como de sus estudiantes. La muestra fue de 180 maestros y 3,735 estudiantes de 19 escuelas elementales que voluntariamente solicitaron participar. Los maestros participantes enseñaban en los grados primero al quinto. Una vez se identificaron los maestros que voluntariamente solicitaron participar se parearon las escuelas usando el tamaño y el calendario de enseñanza para asignar en forma aleatoria a los grupos experimental y control.

Durante la investigación se proveyó desarrollo profesional durante un año. El contenido incluyó la comprensión del signo de igualdad como un indicador de una relación, el uso de
relaciones de números para simplificar cálculos, y la generación, representación y justificación de conjeturas acerca de las propiedades fundamentales de las operaciones con números. El desarrollo profesional se estructuró a base de diálogos, reflexiones y trabajo de grupo acerca de la práctica de la enseñanza en la sala de clases.

Los datos, tanto para los maestros como sus estudiantes, se recogieron a través de técnicas de avalúo. Los maestros contestaron una prueba y participaron de una entrevista para evaluar el conocimiento del pensamiento del estudiante. Los estudiantes del grupo control y experimental contestaron un prueba al final del año. Un grupo de cuatro estudiantes fueron seleccionados en forma aleatoria para participar de una entrevista cuyo propósito era evaluar su pensamiento relacional.

El análisis de los datos se hizo comparando las respuestas de los maestros que participaron del desarrollo profesional con las respuestas de aquellos que no participaron. De igual forma se compararon la de los estudiantes que tomaban clases con los maestros que participaron del desarrollo profesional, con la de los estudiantes de los maestros que no participaron del mismo. No se encontraron diferencias significativas en relación al conocimiento del maestro, pero sí los maestros del grupo experimental demostraron mayor conocimiento al generar estrategias que los estudiantes podrían usar para resolver oraciones numéricas abiertas. Los resultados de los estudiantes reflejaron que aquellos ubicados con los maestros participantes obtuvieron mejores puntuaciones en la prueba de igualdad. Los estudiantes de tercer y quinto grado ubicados con los maestros participantes demostraron mayor uso de pensamiento relacional al compararlos con el grupo no participante.

Metodología de métodos mixtos. Cormas y Barufaldi (2011) investigaron características efectivas de base científica de 21 programas de desarrollo profesional financiados por la NSF. El
propósito de la investigación era identificar las características que estos programas compartían con las efectivas de base científica de programas de desarrollo profesional. Además, estuvieron interesados en conocer cuáles características emergían como resultado de la investigación.

Para llevar a cabo el estudio los investigadores identificaron 16 características de programas de capacitación efectivos. La sección de los hallazgos de las 21 evaluaciones de los programas de desarrollo profesional se utilizó como la unidad de análisis. El análisis de contenido fue la metodología utilizada para recoger los datos y contestar las preguntas de investigación. Este es un método empírico cuantitativo que describe el contenido del texto a través de la identificación y entendimiento de términos, frases y otras características.

Los resultados reflejaron que las 16 características fueron incorporadas, pero en una variedad drástica en grados. Las características más identificadas fueron, requiere recursos, trata a los maestros como profesionales, provee para la colaboración entre maestros y otros, el desarrollo profesional es continuo y por último, el mejoramiento de las destrezas de comunicación. Las características que emergieron fueron el mejoramiento de las destrezas de comunicación y tiene aplicaciones a situaciones de vida real.

Los investigadores alinearon dos de las características efectivas identificadas en los resultados obtenidos con un modelo muy conocido para el desarrollo profesional en ciencias y matemáticas que fue creado por líderes educativos. El compromiso con la visión y los estándares es el eje central de este modelo. Consideraron los investigadores que este (eje central) puede estar alineado con la característica efectiva de un programa de desarrollo profesional definida como que es coherente y está alineado con las metas de la escuela y distrito. Esta característica es la novena que más aparece en los hallazgos de los 21 estudios analizados. Resultados similares se reflejaron al alinear el segundo paso del modelo que establece el análisis del
aprendizaje del estudiante y de otros datos, con la característica definida como la efectividad del maestro y el logro del estudiante son usados para determinar si el desarrollo profesional ha funcionado. Esta característica solamente apareció en dos de las 21 evaluaciones analizadas.

Lee (2007) utilizó metodología cuantitativa y cualitativa para investigar la efectividad de un modelo de desarrollo profesional para maestros de matemáticas. El propósito del desarrollo profesional era aumentar el conocimiento del maestro en los estándares de matemáticas, en cómo el estudiante construye las ideas matemáticas, en estrategias de enseñanza de altos niveles de pensamiento, en evaluó y en el uso efectivo de la tecnología. El modelo consistía de cuatro componentes: (a) apoyo sistemático de administradores, padres, especialista y colegas; (b) talleres para el desarrollo del conocimiento, (c) implantación en la sala de clases y aplicación, y (d) la construcción de comunidades de aprendizaje. Los talleres, la implantación y aplicación ocurrían simultáneamente. Todos estos componentes promovieron el entendimiento conceptual profundo del contenido de matemáticas y expusieron a los participantes a enfoques de enseñanza creativos e innovadores.

Se utilizó un cuestionario administrado antes y después del desarrollo profesional para medir el conocimiento y la disposición hacia la enseñanza y aprendizaje de las matemáticas. Las observaciones de clases, el análisis de documentos de los maestros y la entrevista formaron parte de la colección de datos utilizando la metodología cualitativa. Los diarios escritos semanales para evaluar las sesiones de desarrollo profesional que sometieron los maestros, los planes de enseñanza, evidencia de actividades de avalúo y un cuestionario de preguntas abiertas fueron los documentos utilizados para analizar las experiencias de los maestros en el programa de desarrollo profesional.
Se hizo un análisis descriptivo usando una hoja de cálculo para los datos obtenidos a través de la administración del cuestionario. Un análisis comparativo constante de datos implantado en varias etapas formó parte del análisis de los datos cualitativos. A través de las etapas se hizo una codificación abierta y selectiva de los datos escritos, se integraron las similitudes, se asignaron nombres a las categorías, se examinaron los patrones recurrentes y los temas emergentes y se delimitó la teoría.

El análisis de los datos obtenidos por la metodología cualitativa identificó varios temas que ayudaron a mejorar el conocimiento del maestro para la enseñanza de las matemáticas. Estos temas incluyeron mayor conocimiento de las metas del currículo, un nuevo enfoque de enseñanza para el entendimiento de las matemáticas, lecciones de enseñanza centradas en el estudiante, mayor conciencia del estudiante con necesidades especiales, implantación de estrategias de avalúo y la integración de los padres en los asuntos académicos. Se identificaron tres componentes que catalogaron este diseño de desarrollo profesional con un gran potencial para lograr el conocimiento del maestro: (a) participantes de una misma escuela que sirvieron de red de apoyo a través del proyecto, (b) asignar tareas a los participantes para que planificaran y llevaran a cabo una actividad para los padres o sus colegas maestros y (c) la cantidad de tiempo que el maestro participó en los talleres y el esparcimiento de las actividades durante casi todo un año.

Ferreira (2007) realizó una evaluación de un programa auspiciado por donde quince estudiantes universitarios que estudiaban ciencia, matemáticas, tecnología o ingeniería, daban apoyo a maestros de ciencia y matemáticas de escuelas intermedias. Se ubicaron de uno a dos de los estudiantes universitarios en un salón de clases colaborando con el maestro de matemáticas o
de ciencia. Cada estudiante participante pasó 10 horas por semana dando apoyo a un maestro de matemáticas o ciencia.

La meta de este programa era mejorar la calidad de la enseñanza de ciencias y matemáticas en las escuelas intermedias participantes. Este incluyó oportunidades de capacitación profesional en el contenido y enseñanza de ciencias y matemáticas a través de talleres de 3 horas de duración durante todo un año. Se ofreció además, un campamento de verano en el contenido de ciencias y matemáticas de cuatro días de duración.

La investigación utilizó un enfoque metodológico mixto. Los datos de la metodología cualitativa se recolectaron con visitas de campo, observaciones de clases y entrevistas con los estudiantes universitarios y los maestros, y de grupos focales. La metodología cuantitativa del diseño cuasi experimental incluyó un grupo experimental y un grupo control. El grupo experimental estuvo formado por maestros de matemáticas y ciencia que participaron del programa y el control por maestros de ciencias y matemáticas de las escuelas designadas. Ambos grupos contestaron un cuestionario al inicio y terminación del año escolar. El mismo tenía como objetivo obtener información sobre la percepción del maestro acerca de sus prácticas de enseñanza y su nivel de confianza con la materia académica que enseñaba.

Debido a la dificultad de identificar datos de aprovechamiento del estudiante fue imposible comparar los resultados del grupo experimental con el control. El impacto del programa fue basado en los comentarios de los estudiantes universitarios y los maestros. Los resultados reflejaron que el programa tuvo éxito en proveer oportunidades de aprendizaje para los maestros participantes.

Polly y Hannafin (2011) examinaron las prácticas de enseñanza de dos maestros de cuarto y quinto grado durante un año, mientras participaban de un programa de desarrollo
profesional. Utilizaron la metodología de métodos mixtos. Los datos se recolectaron a través de entrevistas, observaciones de clases, observaciones de las actividades de desarrollo profesional y análisis de videos de las prácticas de los maestros. Los dos maestros seleccionados cumplían con el criterio de maestros que trataran de aplicar lo aprendido en los talleres en la sala de clases, lo que conformó la selección de una muestra con propósito.

El foco del programa de capacitación era la implementación de la enseñanza centrada en el aprendiz. El programa de desarrollo profesional se llevó a cabo a través de talleres donde se modelaban las prácticas centrada en el aprendiz y se exploraban y discutían formas de usar manipulativos y tecnología. El personal del programa daba retroalimentación durante el proceso para ir desarrollando el andamiaje de la enseñanza centrada en el estudiante.

Los hallazgos de las entrevistas, las observaciones y del análisis de los videos se codificaron identificando los momentos específicos donde prácticas particulares ocurrían. Las codificaciones correspondían a prácticas relacionadas con el uso de algoritmo, la tarea de enseñanza, el tipo de pregunta utilizada para la discusión, la comunicación en matemáticas, las representaciones de conceptos y la integración de la tecnología. Cada práctica de enseñanza fue calificada con una puntuación entre cero a cuatro, donde a mayor puntuación, mayor era la enseñanza centrada en el aprendiz. Los resultados revelaron una ausencia de alineación entre las prácticas observadas en los adiestramientos y aquellas implantadas por el maestro. El autor sugiere que para mejorar la implantación de las estrategias centradas en el estudiante debe haber apoyo continuo. El apoyo fomenta el andamiaje durante la transición entre el adiestramiento y la implantación.

De las investigaciones recopiladas sobre la enseñanza de las matemáticas en el marco metodológico, una utilizó el enfoque cuantitativo, cuatro la metodología de investigación
cualitativa y cuatro el de métodos mixtos. Solamente la investigación de Clarke (1997) utilizó el diseño de estudio de caso para examinar el cambio de dos maestros de sexto grado mientras participaba de un programa de desarrollo profesional. Al examinar las que enfocan la efectividad del desarrollo profesional, una utilizó la metodología cualitativa.

Las investigaciones de Clarke (1997) y de Polly y Hannafin (2011) son las que más se asemejan a la investigación que se llevó acabo. Sin embargo, se diferencian en la selección de los participantes, la metodología que se utilizó para recopilar los datos y el enfoque de la investigación. En esta investigación se consideró una muestra de participantes de los grados cuarto, quinto y sexto, muy diferente a las muestras que se utilizaron en los estudios que se revisaron. Además, el estudio de caso estuvo enfocado en los elementos de un programa de desarrollo profesional caracterizado como efectivo (unidad de análisis), que propician el conocimiento del contenido del maestro que no es experto en la materia y que enseña, para transformar la sala de clases.

A través de la revisión de la literatura se estudiaron los temas relacionados con la capacitación profesional y su aportación al conocimiento del maestro para la enseñanza de las matemáticas. La misma proveyó una imagen clara acerca de los conceptos claves que definen los programas de desarrollo profesional efectivos, de los acercamientos o enfoques que permean en un salón de matemáticas orientado en la enseñanza a base de la reforma de los estándares y de los conocimientos necesarios de un maestro que enseña matemáticas. El estudio de literatura reflejó una imagen clara de los atributos que permean en la enseñanza y el avalúo de las matemáticas en la era de los estándares. Todos esos conocimientos formaron la base para la selección del diseño de investigación cualitativa de estudio de caso. Este diseño favoreció el estudio profundo de una unidad de análisis, en nuestro caso un programa de capacitación
profesional catalogado de alta calidad (Virginia Department of Education, 2012; Vermont Agency of Education, 2014) a través de una variedad de estrategias para la recolección de los datos.

Esta investigación buscó entender cómo la participación del maestro de matemáticas en actividades de capacitación profesional aporta al conocimiento del contenido necesario para enseñar matemáticas. Por tal razón, se propuso el estudio profundo del programa de capacitación profesional utilizando entrevistas, actividades de avalúo, reflexiones y cotejo de documentos, buscando entender si las experiencias de los maestros participantes aportaban al cambio en conocimiento del contenido para la enseñanza de las matemáticas. Las estrategias e instrumentos para la recolección de datos estuvieron fundamentados en los conocimientos identificados en el estudio de los temas relacionados al problema de investigación. Los hallazgos que se reflejaron una vez analizados los datos, son de utilidad para hacer comparaciones con aquellos identificados en la literatura, y contribuyen al aumento de la base del conocimiento sobre la capacitación profesional del maestro que enseña matemáticas en el sistema educativo puertorriqueño. En consecuencia se fortalecerá el cúmulo de saberes que atañen al tema de la educación en general.
CAPÍTULO III
PROCEDIMIENTOS

En este capítulo se explica la metodología utilizada para explorar, describir, analizar e interpretar los hallazgos que se obtuvieron de las experiencias para desarrollar conocimiento de contenido de las matemáticas, de seis maestras del nivel de cuarto al sexto grado que participaron de una iniciativa de desarrollo profesional del Programa MSP. La primera sección presenta información que apoya la selección de la metodología cualitativa del estudio de caso para la realización de la investigación que se llevó a cabo. Luego se describe y fundamenta el proceso para la selección de los participantes y se provee información sobre el contexto donde se desarrolló la investigación. Se describen los métodos que se utilizaron para la recopilación de los datos y cómo se llevó a cabo el análisis de los mismos. Por último, se identifican y explican los elementos que se delinearon para lograr la confiabilidad y validez.

Diseño

El método de investigación cualitativa fue seleccionado para describir, analizar e interpretar profundamente la forma en que un programa de capacitación aportó al aprendizaje de las matemáticas del maestro que enseña en el nivel de cuarto al sexto grado, para que implante una enseñanza basada en la reforma de los estándares que el DEPR inició en el año 2007. En este método se estudian escenarios naturales para entender cómo los procesos, significados y el contexto interactúan tanto con el fenómeno como con los individuos bajo estudio (Maxwell, 2012). A través de la estrategia de recolección de datos cualitativos conocida como estudio de caso, se logra obtener un entendimiento desde el punto de vista del participante (Bloomberg & Volpe, 2012). Se enfatiza la exploración y la descripción del fenómeno en el contexto donde el participante experimenta y vive directamente la experiencia (Bloomberg & Volpe, 2012).
La investigación cualitativa está fundamentada en la perspectiva filosófica constructivista (Bloomberg & Volpe, 2012; Merriam, 2009). Esta corriente filosófica expone que la realidad es socialmente construida. Desde esta perspectiva, no hay una simple y única realidad, lo que significa que el individuo construye su entendimiento a través de sus interacciones sociales e influencias contextuales donde vive su experiencia. De acuerdo a Bloomberg y Volpe (2012), un mismo evento puede ser interpretado de diferentes formas, según la comprensión del mundo y el significado que el individuo le da a sus experiencias al participar de un evento. A través de los datos se pretendió explorar los significados que los maestros le dieron a la experiencia obtenida en el programa de capacitación profesional, considerando el contexto de dicho programa.

Las preguntas que se establecieron en la presente investigación exploraron y describieron procesos y no resultados, haciendo del enfoque cualitativo el método por excelencia para perseguir el propósito en esta investigación (Dyson, 2007). El interés de este estudio fue aplicar el proceso inductivo para recoger, analizar e interpretar datos, y entender los significados que los participantes le dieron a su experiencia en contexto. Además, la investigadora pretendió describir e interpretar las experiencias en el programa de capacitación y la forma en que este aportó al aprendizaje y transferencia a la sala de clases. Las expresiones de Merriam (2002) dan apoyo en la selección de este diseño:

El investigador cualitativo no está interesado en opiniones superficiales como lo hacen los cuestionarios, o en causa y efecto como lo hace la investigación experimental; ellos quieren saber cómo la gente hace cosas y el significado que le dan a sus vidas (p.19).

Estudio de caso. La estrategia de estudio de caso es uno de los enfoques utilizados para obtener datos sistemáticos en las investigaciones cualitativas. El estudio de caso es un diseño que implica el estudio intesivo de un mismo fenómeno con explicaciones completas y
complejas de este (fenómeno). El mismo persigue entender la unidad bajo estudio como un todo y con un nivel amplio de profundidad. Típicamente se estudia la unidad o el fenómeno desde diferentes componentes como lo son: (a) la observación (participante o no participante), (b) la entrevista (estructurada, semi- estructurada o no estructurada) y (c) el análisis de documentos. De acuerdo a Bloomberg y Volpe (2012), este enfoque permite analizar en forma profunda un programa, institución o proceso, y además describir en forma detallada a los escenarios y a los participantes que están inmersos en el fenómeno de estudio. Begum y Khan (2012) establecen que “el estudio de caso cualitativo no solamente ayuda a encontrar los datos, sino que va más allá de los datos y busca el significado que tienen los mismos para el investigador” (p. 380).

Plantea Yin (2009) que hoy en día sigue siendo un reto para los investigadores los diseños de estudios de casos. Según explica este autor, no se han definido claramente las destrezas que debe tener un investigador que hace estudio de caso. Añade que esto provoca que haya pocas formas de detectar la habilidad de un investigador para llevar a cabo buenos estudios de caso. Sin embargo, este autor establece unas guías que ayudan a fortalecer las investigaciones basadas en este diseño. Estas guías sugieren consideraciones que debe tomar el investigador para la selección del diseño de estudio de caso y procedimientos sistemáticos que favorezcan una investigación rigurosa. Por tal razón la literatura de Yin (2009) sobre el estudio de caso se consideró fundamental y apropiada en la selección de esta estrategia como metodología de investigación. La literatura de diseño de estudio de caso de Merrian (2009) complementan la expuesta por Yin (2009). Las aportaciones de ambos autores fueron la fuente primordial utilizada para el diseño y análisis de los datos que se recolectaron en esta investigación. Se entiende que este método era el más apropiado para contestar las preguntas que dirigieron esta investigación. Estas preguntas buscaban respuestas que ayudaran a entender cómo los
programas de desarrollo profesional pueden aportar al aprendizaje del maestro y en consecuencia al mejoramiento del aprovechamiento académico de los estudiantes. Las mismas buscan entender cómo y en qué forma el maestro se apodera de los conocimientos, al participar de un programa de desarrollo profesional, los hace suyos y está dispuesto a transferirlos a la sala de clases.

Merriam (2009) establece que “el estudio de caso es una descripción profunda y un análisis de un sistema que tiene límites” (p. 40). Añade, que establecer límites es lo que define el objeto de estudio, que viene a conformar la unidad de análisis. Esa unidad de análisis tiene fronteras que pueden identificarse por el número finito de participantes o por un tiempo finito para las observaciones (Merriam, 2009). Los planteamientos de Merriam (2009) apoyan nuestra selección de una alianza entre el programa de capacitación profesional bajo MSP para maestros de matemáticas del nivel elemental de cuarto al sexto grado y una institución universitaria como la unidad de análisis que examinó esta investigación. Esta alianza MSP está limitada por los maestros de matemáticas del cuarto al sexto grado que participaron de la iniciativa de desarrollo profesional MSP durante los años escolares desde el 2007-2008 hasta el 2013-2014. Merriam, además señala que en el estudio de caso se puede colocar una valla para encerrar lo que se va a estudiar. En el caso de esta investigación, la valla cercaría a los maestros de cuarto al sexto grado de matemáticas que participaron del desarrollo profesional entre los años del 2007 al 2014, a los recursos que ofrecieron los talleres, a los documentos que dieron forma a la estructura del programa de desarrollo profesional y a los temas de matemáticas desarrollados durante las actividades o reuniones de capacitación para los maestros. La descripción profunda a la que se refiere Merriam se logró a través de una variedad de estrategias de recolección de datos que se enumerarán más adelante.
Yin (2009) presentó unas condiciones que facilitan seleccionar el método para la investigación. Según expone, ese método tiene que ver con tres aspectos: (a) el tipo de pregunta de investigación que se ha establecido, (b) si requiere control de los eventos conductuales, y (c) el grado de enfoque en el evento contemporáneo. Si el tipo de pregunta de investigación se plantea en cómo y por qué, puede ser apropiado un enfoque experimental, histórico o un estudio de caso. Continúa señalando el autor, que plantear la pregunta en cómo y por qué en un estudio de caso requiere que no haya control de variables y que el foco sea en un evento contemporáneo. En la investigación que aquí se desarrolló, se cumple con las condiciones de estudio de caso propuestas por Yin (2009). Yin presentó cuatro diferentes diseños posibles para la investigación de estudio de caso que incluyen diseño de caso único, unidades integradas de caso único, casos múltiples, y unidades integradas de casos múltiples. Esta investigación se basó en el diseño de unidades integradas de caso único. El programa de capacitación MSP representó la unidad principal de análisis (el caso único) y los maestros participantes representaron las unidades integradas de análisis más pequeñas (figura 1). Las experiencias y significados de estos maestros ofrecieron luz a la interpretación de las aportaciones que el programa hace en el desarrollo de conocimiento de contenido para la enseñanza de las matemáticas.

<table>
<thead>
<tr>
<th>Contexto MSP: Unidad Principal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maestros: Unidades Integradas</td>
</tr>
</tbody>
</table>

| Maestro 1 | Maestro 2 | Maestro 2 | Maestro 3 | Maestro 4 | Maestro 5 | Maestro 6 |

Figura 1. Diseño para el estudio de caso
La metodología de investigación cualitativa de estudio de caso ha sido utilizada en investigaciones parecidas a la que aquí se llevó a cabo. Por ejemplo, Clarke (1997) utilizó este enfoque para observar el cambio de dos maestros de sexto grado y los factores asociados a ese proceso de cambio mientras implantaban un currículo de matemáticas innovador. Clarke informó que el enfoque de diseño de estudio de caso se escogió “porque el propósito del estudio demandó un profundo entendimiento de la situación y sus significados de aquellos que estuvieron involucrados” (p. 283). Obara y Sloam (2009) también utilizaron el estudio de caso para examinar las experiencias de tres maestros de sexto grado al implantar un currículo innovador durante la introducción de los nuevos estándares en el estado de Georgia. En el estudio de Klein y Riordan (2009) se escogió el diseño de estudio de caso porque “la compleja y naturaleza dinámica del diseño, las experiencias e implementación del desarrollo profesional hacen que sea mejor entendido usando estos métodos” (p. 62). Hahambu, Brownlee y Petriwskyj (2012) llevaron a cabo un estudio para explorar las perspectivas de enseñanza en el contexto de una reforma educativa de 18 maestros instructores de otro grupo de maestros que habían terminado un grado en educación para la niñez temprana. Estos autores utilizaron la metodología de estudio de caso porque se fundamenta en la interpretación, es un paradigma constructivista y dirige la investigación de fenómenos contemporáneos situados en contextos de la vida real. El caso en la investigación de Hahambu, Brownlee y Petriwskyj fue definido por los 18 maestros que completaron el programa de estudios.

Los fundamentos para seleccionar la metodología cualitativa de estudio de caso que han señalado los estudios antes mencionados, apoyaron la selección del mismo para realizar la investigación. Estos avalaron nuestro interés en describir profundamente el significado real de la experiencia de los participantes en el contexto de la capacitación profesional. Estas experiencias
arrojaron luz acerca de los vínculos existentes entre los diseños de programas de desarrollo profesional y el apoderamiento del conocimiento y de las prácticas de enseñanza del maestro que enseña matemáticas.

Iniciativa Mathematics and Science Partnership: el estudio de caso. El Programa (MSP) es una iniciativa de desarrollo profesional adscrita al Programa de mejoramiento académico y calidad del maestro (AITQ, siglas en inglés) correspondiente al Título II B de la ley NCLB (USDE, 2011a). El programa asigna fondos para crear alianzas entre instituciones de educación superior y agencias locales de educación de alta necesidad (LEA), en el caso de Puerto Rico, con el Departamento de Educación, para mejorar y actualizar la enseñanza de ciencias y matemáticas. Los programas de educación están dirigidos a mejorar el conocimiento de contenido de los maestros y el desempeño de los estudiantes (USDE, 2011a).

El estudio de caso seleccionado para esta investigación responde una alianza para desarrollar un programa de desarrollo profesional bajo la iniciativa MSP, entre el Departamento de Educación de Puerto Rico y una institución de educación postsecundaria. Dicha institución ha implantado el programa por varios años. La meta establecida es proveer educación a maestros de matemáticas y ciencias de los niveles de cuarto al noveno grado en contenido y estrategias de
enseñanza fundamentadas en la investigación. Las actividades de capacitación están enmarcadas en los estándares de contenido y expectativas de grado que ha establecido el DEPR.

Tabla 2

Fondos federales que ha recibido el DEPR bajo el programa MSP

<table>
<thead>
<tr>
<th>Año</th>
<th>Fondos que ha recibido MSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>5,005,935</td>
</tr>
<tr>
<td>2004</td>
<td>7,388,267</td>
</tr>
<tr>
<td>2005</td>
<td>8,602,403</td>
</tr>
<tr>
<td>2006</td>
<td>7,755,860</td>
</tr>
<tr>
<td>2007</td>
<td>7,705,142</td>
</tr>
<tr>
<td>2008</td>
<td>7,398,451</td>
</tr>
<tr>
<td>2009</td>
<td>7,351,085</td>
</tr>
<tr>
<td>2010</td>
<td>7,629,945</td>
</tr>
<tr>
<td>2011</td>
<td>6,621,382</td>
</tr>
</tbody>
</table>

El programa de desarrollo profesional que seleccionó esta investigación tiene como finalidad la formación de docentes con dominio en las áreas curriculares de matemáticas y ciencias para que puedan impactar en forma positiva la ejecución académica de sus estudiantes. Los talleres y actividades de capacitación en los temas sobre el contenido de matemáticas y ciencias, la integración curricular en las materias académicas y de la tecnología, la investigación en acción, y el diseño de materiales curriculares, son las áreas medulares para alcanzar el dominio de la materia y las habilidades de enseñanza de los maestros que participan del programa. En los talleres se enfoca en el contenido de la materia y en las estrategias que auxilian
el entendimiento y aplicación de esos contenidos en situaciones de vida real. El diseño de este programa ha contemplado una variedad de componentes. Los mismos favorecen que se logren las metas que se establecieron, debido a que están alineados a los hallazgos identificados en la literatura sobre programas de desarrollo profesional efectivos. Dichas actividades de desarrollo profesional son sostenidas y de larga duración. Además, contempla visitas de seguimiento y materiales curriculares que tiene a su disposición el maestro para integrar en sus clases.

Uno de los componentes es la creación de actividades de desarrollo profesional en el verano. Los mismos se desarrollan través de conferencias y talleres en la modalidad presencial. Se integran actividades de investigación a través de actividades de campo tanto en ciencias como en matemáticas. El desarrollo profesional durante el verano da énfasis al conocimiento del contenido. Según evidencia identificada en la web, este programa ha desarrollado contenidos sobre patrones, rectas paralelas, perpendicularidad y simetría para los maestros de matemáticas del nivel elemental. Durante la enseñanza los recursos dan énfasis a la aplicación de estos conceptos a situaciones de vida real.

Además de las actividades durante el verano, se calendarizan actividades sabatinas. Las mismas enfatizan, al igual que las llevadas a cabo en el verano, en el contenido de la materia. Los maestros del nivel elemental de matemáticas han participado en actividades para mejorar el conocimiento de contenido de los conceptos de rotación, reflexión y traslación en el área de la geometría. Por otro lado, los participantes han fortalecido el entendimiento de los conceptos de fracción y las operaciones, así como las operaciones con enteros y las equivalencias entre los números. Se identificó que la estrategia de representaciones fue utilizada para desarrollar el conocimiento del concepto y el entendimiento de los temas curriculares antes mencionados.
Las conferencias es otro ingrediente de la iniciativa MSP. En estas conferencias los maestros se orientan sobre estrategias y metodologías variadas efectivas para conducir la enseñanza. Estas conferencias son ofrecidas por especialistas en el tema. Otras conferencias se llevan a cabo en congresos auspiciados por el Departamento de Educación de Puerto Rico, donde los maestros que participan en alguna de las alianzas se reúnen y desempeñan el rol de conferenciante. De esta forma pueden demostrar a otros maestros sus conocimientos adquiridos y contribuyen además a formación académica de sus pares en nuevas estrategias y tendencias en la enseñanza de las matemáticas.

Este programa reúne tres requisitos indispensables de inclusión de capacitación que exigía la investigación que se llevó a cabo. Primero, tiene que ofrecer capacitación profesional a maestros de matemáticas de los niveles del cuarto al sexto grado. Segundo, la capacitación profesional tiene que contemplar tanto el contenido de conocimiento de las matemáticas como el pedagógico. Por último, los temas para el desarrollo del aprendizaje del maestro tienen que ser coherentes y alineados con los estándares y expectativas de grado del programa de matemáticas del 2007.

Participantes

El interés de esta investigación fue describir, analizar e interpretar el proceso de capacitación y los significados que los maestros daban a su experiencia al participar de un programa de desarrollo profesional. El propósito de la investigación estuvo enmarcado bajo la metodología cualitativa, por lo tanto, el primer principio que debió guiar la selección de los participantes fue el de la muestra intencional (Maxwell, 2012). Este principio establece que al seleccionar a los participantes requiere de identificar grupos, escenarios o individuos que mejor exhiban las características del fenómeno de interés. En el caso de esta investigación el fenómeno...
de estudio fue la capacitación profesional para el desarrollo del conocimiento del contenido para la enseñanza de las matemáticas. Maxwell (2012) añade que es necesario identificar el marco conceptual que guía la investigación para seleccionar a los participantes. El marco conceptual que se consideró en este estudio incluyó los siguientes temas: (a) la reforma de los estándares académicos promovida por la ley NCLB, (b) conocimiento del contenido de matemáticas, (c) conocimiento pedagógico de la materia de matemáticas, (d) la enseñanza de matemáticas en el nivel elemental en los grados del cuarto al sexto, (e) la capacitación profesional de alta calidad, cambio del maestro y (f) el avalúo del aprendizaje.

Maestros. Siguiendo el principio antes expuesto y propuesto por Maxwell (2012), para llevar a cabo la investigación se identificaron maestros de matemáticas que hubiesen participado de un programa de desarrollo profesional (MSP) que estableciera objetivos para el mejoramiento de la enseñanza de matemáticas basada en la reforma de los estándares. Los programas de desarrollo profesional que se evaluaron tenían que proveer en su diseño elementos de alta calidad, basados en investigación científica y que demostraran cómo las actividades curriculares se transferían a la sala de clases, aspectos que están evidenciados en la revisión de la literatura. Unas seis maestras que participaron en uno de esos programas fueron seleccionadas para participar del estudio.

La muestra consistió en una no probabilística. Este es el método que selecciona la mayoría de las investigaciones cualitativas (Merriam, 2009). Es importante seleccionar una muestra de la cual se pueda aprender mucho del fenómeno a estudiar (Merriam, 2002). Esto conllevó que como primer paso se identificaran los posibles candidatos en una reunión con el recurso que fue asignado del programa de desarrollo profesional MSP, de la institución de educación superior participante. El programa MSP mantiene vínculos con los participantes. Por
tal razón, el recurso asignado hizo el primer contacto con el potencial participante, utilizando el anuncio que se diseñó para el reclutamiento. Se había propuesto que a todos los posibles candidatos contactados se les citaría individualmente a una reunión con la investigadora para orientarles sobre todos los aspectos de la investigación. Sin embargo, ninguno de los candidatos contactados estableció comunicación con la investigadora. Por tal razón, el recurso de MSP asignado, autorizó a orientar a posibles participantes durante las actividades de desarrollo profesional de MSP en abril de 2015 y junio de 2015. La investigadora les orientó sobre la investigación y les extendió el anuncio previamente diseñado para hacer el reclutamiento.

Se seleccionaron los seis primeros voluntarios que habían participado de MSP en cualquiera de los años desde el 2007 al 2014 y que cumplieron con los requisitos de inclusión. Todas eran maestras y tenían diferentes años de experiencia. La experiencia general como maestro fluctuó entre 7 a 25 años. La experiencia como maestro de matemáticas fluctuó entre cuatro a 22 años. De las seis maestras, una enseñaba en el cuarto grado, dos enseñaban en cuarto y sexto grado, dos enseñaban en los grados de quinto y sexto, y una enseñaba a estudiantes de cuarto, quinto y sexto grado. De esta forma, se aplicó el segundo principio para seleccionar a los participantes establecido por Maxwell (2012), llamado muestreo de conveniencia. Al respeto Maxwell (2012) argumenta a favor de esta muestra señalando que:

Aunque esta muestra contrasta en forma negativa con la intencional, la realidad de acceso, costo, tiempo y dificultad influyen forzosamente cada decisión acerca de los escenarios y participantes que van a incluirse en un estudio, e ignorar estas consideraciones como no rigurosas es ignorar las condiciones reales que van a influenciar cómo se recogerán los datos, y la habilidad de estos datos para contestar la pregunta de investigación (p.94).
Al considerar los años de experiencia y los grados en los cuales enseña el maestro, para seleccionar a las seis participantes, se utilizó la estrategia de máxima variación (Bloomberg & Volpe, 2009; Merriam, 2009) para representar e interpretar múltiples perspectivas acerca del caso de estudio. De acuerdo a los autores la estrategia de máxima variación permite que se seleccionen participantes que representen el rango más amplio posible relacionado al problema de investigación. En esta investigación se exploraron los significados de la experiencia que emergen de los maestros tomando en cuenta los años de experiencia y el nivel del grado. Se habían establecido tres rangos de experiencias: (a) más de 15, (b) entre 15 a 5 años y (c) menos de 5. El rango de experiencia general como maestro de las participantes fue de 7 a 25 años, y como maestro de matemáticas de 4 a 22 años. Se logró obtener la máxima variación a la que se aspiraba según los años de experiencia como maestro de matemáticas. El estudio también tenía interés en que los participantes representaran todos los grados del nivel de enseñanza de cuarto al sexto grado. Por tal razón, se esperaba reclutar por lo menos un maestro que enseñara en el cuarto grado, uno en el quinto y uno en el sexto grado. Hubo representación de maestras que enseñaban en diferentes grados del nivel cuarto al sexto grado, como se mencionó anteriormente. Se logró la máxima variación al considerar el grado de enseñanza. Lograr la máxima variación requería que por lo menos se reclutaran seis maestros: tres que representarían las tres categorías de rango de experiencia y tres que representarían la enseñanza en los grados del cuarto, quinto y sexto. En resumen, los requisitos de inclusión para la participación fueron, haber participado en el programa de capacitación profesional de la institución de educación superior participante en cualquiera de los años desde el 2007 hasta el 2014 y enseñar en una escuela pública en el nivel de cuarto al sexto grado.
Recursos. Un representante del programa MSP facilitó los documentos necesarios para llevar a cabo el cotejo de la documentación del programa de capacitación, los cuales proveyeron información necesaria para contestar las preguntas de investigación y realizar la triangulación de los datos. El recurso asignado autorizó al cotejo de documentos en las oficinas del programa. La autorización incluyó el cotejo de propuestas sometidas al Departamento de Educación de Puerto Rico, informes de logros, calendarios de actividades del programa y las propuestas de investigación en acción las cuales estaban encuadernadas constituidas como un solo documento.

Recopilación de datos

Los métodos de recolección de datos son los que proveen la información necesaria para contestar las preguntas de investigación (Maxwell, 2012). En la investigación cualitativa estos métodos se transmiten a través de las palabras ya sea citando expresiones de entrevistas, redactando observaciones de conductas o actividades, o de fragmentos de diferentes tipos de documentos (Merriam, 2009). Los mismos son usados para hacer inferencias sobre el fenómeno bajo estudio. Maxwell (2012) plantea que en la investigación cualitativa las inferencias que el investigador hace al analizar un dato pueden ser examinadas contra datos adicionales. En este método de investigación se utilizó una variedad de métodos para coleccionar los datos, lo que se conoce como triangulación (Maxwell, 2012). Esa variedad permite apoyar y examinar una inferencia que se haya realizado. A través de la estrategia de triangulación se reduce el riesgo de la interpretación que el investigador haga de los hallazgos y se consigue una mejor comprensión del problema de investigación (Wahyuni, 2012). En el Apéndice A se presenta la relación de las estrategias de recopilación de datos, los objetivos y las preguntas de investigación.

Los datos que se recogieron en esta investigación tuvieron el propósito de formar una representación sobre las prácticas del maestro implantando los estándares de contenido de
matemáticas. Los mismos permitieron describir e interpretar la forma en que los programas de desarrollo profesional aportaron al aprendizaje y a las prácticas de enseñanza basadas en la reforma de los estándares. La colección de datos incluyó entrevistas a maestros, cotejo de documentos de desarrollo profesional del MSP, las notas de reflexión y la respuesta escrita inmediata a unas preguntas de los maestros participantes.

Entrevistas. El instrumento de entrevistas fue el método primario utilizado para recopilar información que contestara las preguntas de investigación. La entrevista es una conversación con propósito entre el investigador y el entrevistado sobre el tema de la investigación (Merriam, 2009). Wahyuni (2012) expone que “la característica principal de este método es facilitar al entrevistado compartir sus perspectivas, historias y experiencias relacionadas con el fenómeno bajo estudio” (p. 73). Este método “es necesario cuando se está interesado en eventos que han pasado y no se pueden replicar” (Merriam, 2009, p. 89). En el caso de esta investigación, se estuvo interesado en cómo fue la experiencia del maestro en el programa de capacitación profesional y cómo se dio el nuevo aprendizaje al haber participado de ese programa. Además sirvió para identificar los elementos del diseño e implantación del programa de capacitación profesional.

El tipo de entrevista que se utilizó fue la semi-estructurada (Merriam, 2009; Wahyuni, 2012) con un nivel exhaustivo de profundidad. En este tipo de entrevista se utiliza una lista de preguntas predeterminadas en forma estructurada, pero se mantiene suficiente flexibilidad para que el entrevistado hable libremente de algún tema (Wahyuni, 2012). Además, facilita que el investigador aborde nuevos temas para obtener una comprensión más profunda del problema de investigación (Merriam, 2009; Wahyuni, 2012). En el diseño del instrumento de entrevista se incluyeron las preguntas principales dirigidas a contestar las preguntas de investigación. En cada
una de esas preguntas se establecieron otras de seguimiento para explorar las posibles ideas o temas que salían a relucir en la entrevista y lograr una mayor profundidad sobre el problema que se investigaba (Wahyuni, 2012). Yin (2009) plantea que las preguntas de seguimiento para que el entrevistado informe sobre sus opiniones o proponga nuevas ideas sobre los hechos o datos de los eventos que salen a relucir en las respuestas, aumentan el nivel de profundidad y son fuente para cuestionamientos adicionales. Los planteamientos de este autor se utilizaron como guías para lograr ese nivel exhaustivo de profundidad que se propuso alcanzar en la investigación realizada.

Entrevistas a maestros. El diseño del instrumento de entrevistas del maestro incluyó preguntas para describir los temas de matemáticas y aspectos del programa de capacitación profesional que aportaron al conocimiento de contenido para la enseñanza de las matemáticas, y a la implantación de sus prácticas educativas basadas en la reforma de los estándares. También se incluyeron preguntas dirigidas a explorar e interpretar las creencias y convicciones del maestro sobre la enseñanza y el aprendizaje de las matemáticas. Se les preguntó sobre cambios en sus creencias y en la enseñanza y cómo estaban utilizando las experiencias obtenidas en el programa de capacitación profesional para implantar la enseñanza (ver Apéndice B).

Las entrevistas fueron grabadas en audio digital y se tomaron notas que describían situaciones durante el tiempo que duraron las mismas. Las mismas duraron 1 hora aproximadamente. Al terminar la entrevista se le dio oportunidad al entrevistado de hacer preguntas, o comentarios, o añadir información adicional que quisiera aportar al estudio (Wahyuni, 2012). La primera entrevista se transcribió a un programa de procesamiento de datos antes de entrevistar al próximo participante, y consecuentemente. Se procedió a leerlas, a hacer comentarios y anotar reflexiones objetivas sobre la información obtenida. Esto permitió que se
identificaran aspectos en la pregunta anterior que fueron abordados en la próxima entrevista (Merriam, 2009).

Documentos

Documentos del programa de desarrollo profesional. Se revisaron los documentos del diseño del programa de capacitación profesional, para identificar las metas, objetivos y alcance. Los mismos proveyeron información para identificar los temas de matemáticas, las diferentes estrategias que se planificaron y las que se implantaron para capacitar al maestro. En general, la revisión de los documentos utilizados para ofrecer los talleres del programa de capacitación profesional fue de utilidad para corroborar información obtenida de las entrevistas realizadas a los maestros (ver Apéndice C).

Artefactos.

Respuesta escrita inmediata: A través de esta técnica de avalúo se obtuvo información acerca del conocimiento del contenido de la materia, del pedagógico y el especializado sobre la enseñanza de las matemáticas que poseía cada maestra. La investigadora planteó una pregunta para que se respondiera en forma escrita. La misma requirió la redacción de un plan para desarrollar el entendimiento y avaluar un concepto de matemáticas. La pregunta estuvo dirigida a que se diseñara para la comprensión conceptual, los procedimientos y el razonamiento adaptativo, ejes que forman la enseñanza para el entendimiento de las matemáticas (Van ES & Conroy, 2009) (ver Apéndice D).

Esta técnica de avalúo ha sido utilizada para investigar el tema del conocimiento del maestro. Van Es y Conroy (2009) llevaron a cabo un estudio donde examinaron artefactos que constituían el *Performance Assessment for California Teaching* (PACT) de cuatro aspirantes a maestros. Específicamente, quisieron identificar cómo estos maestros daban sentido a las
matemáticas y cómo diseñaban prácticas de enseñanza para promover el entendimiento de los conceptos. Los investigadores examinaron las respuestas que dieron los maestros a varios “prompts” que constituían el PACT.

Forrester y Chinnappan (2010) examinaron las respuestas que ofrecieron futuros maestros a unas preguntas con el propósito de investigar el dominio del conocimiento de contenido, de procedimiento y conceptual que estos poseían. El interés de los investigadores era examinar cómo los futuros maestros demostraban el dominio conceptual y de procedimiento en la representación del concepto fracción. Los participantes tenían que contestar dos preguntas como parte del avalúo final de una unidad de un curso. Las respuestas debían incluir todos los pasos que se usaron para demostrar el pensamiento, incluyendo representaciones visuales, el algoritmo utilizado y el entendimiento conceptual. La técnica que utilizaron fue muy parecida a la que se implantó en esta investigación.

Jacobs, Franke, Carpenter y Levi (2007) examinaron el razonamiento algebraico de maestros de escuela elemental y de sus estudiantes utilizando un avalúo muy similar a la respuesta escrita inmediata. Luego de que los maestros se capacitaron profesionalmente en el desarrollo del razonamiento algebraico del estudiante, se recolectaron avalúos tanto de los maestros como de los estudiantes. Uno de los avalúos utilizados fue una entrevista estructurada para evaluar el conocimiento del maestro del pensamiento del estudiante y del pensamiento relacional. La pregunta requería que el maestro generara estrategias que el estudiante podría utilizar tanto correctas como incorrectas, para resolver cinco oraciones numéricas abiertas.

Notas de reflexión del maestro. Es un documento preparado por la investigadora donde se recogieron datos relacionados a las creencias sobre la enseñanza, su rol como maestro, el rol del estudiante y la naturaleza del aprendizaje (ver Apéndice E). Sirvió además para identificar
elementos del programa de capacitación que aportaron a la implantación de las prácticas educativas. Fue un instrumento para triangular con la información obtenida en las entrevistas. En esta investigación se les solicitó a las maestras que realizaran dos reflexiones de dos clases. Las notas de reflexión contienen información sobre la fecha, el contenido y objetivo de la clase. Las mismas correspondían a reflexiones una vez terminada una clase.

Procedimiento para la recolección de datos

Toda investigación tiene que garantizar estrategias para enfrentar asuntos de conducta ética. El investigador es responsable de establecer mecanismos para mantener la confidencialidad y protección de los participantes. También es responsable de mantener la credibilidad de la investigación aplicando estrategias para garantizar la validez y confiabilidad. La credibilidad del investigador se refiere también a su integridad durante el desarrollo de los procesos (Merriam, 2009)

Como primer paso la investigadora tomó las orientaciones para obtener las certificaciones de la Junta para la Protección de Seres Humanos en la Investigación (IRB, siglas en inglés) de la Universidad Metropolitana. Además solicitó y recibió el endoso para la investigación de la vicerrectoría y director del programa de capacitación que representó la unidad de análisis. Una vez la Junta aprobó la propuesta se procedió a contactar y a orientar a los posibles participantes. El contacto con los posibles candidatos se hizo en coordinación con el enlace del MSP asignado, debido a que el programa mantiene vínculos con los maestros que han participado de las actividades de desarrollo profesional. Dado que la investigadora no recibió comunicación de interesados en participar una vez divulgado el anuncio de reclutamiento (ver Apéndice F), se seleccionaron los primeros seis contactados que cumplían con los requisitos de inclusión y voluntariamente aceptaron formar parte del estudio. Se procedió a evaluar sus años de
experiencia y grado en el cual enseñaban (ver Apéndice G). Luego, se procedió a orientarles para obtener el consentimiento informado. En la orientación la investigadora les explicó que la participación en el estudio era voluntaria y consentida en forma escrita. Se le orientó sobre sus derechos, entre estos que puede terminar su participación antes de finalizar el estudio si así lo deseaba.

La investigadora estableció un procedimiento para obtener el consentimiento de las participantes (ver Apéndice H). Se les explicó que los datos se recopilarían usando cuatro técnicas: (a) la entrevista, (b) las notas de reflexión, (c) la respuesta escrita inmediata y (d) el cotejo de documentos del programa MSP. Se le informó a cada maestra que la entrevista semiestructurada sería la primera fase de la investigación y que en la misma se le harían preguntas para describir los temas de matemáticas y aspectos del programa de capacitación profesional que han aportado a su conocimiento de contenido para la enseñanza de las matemáticas, y a la implantación de sus prácticas educativas basadas en la reforma de los estándares. Además, se les informó que dicha entrevista duraría alrededor de 1 hora y que la misma sería grabada.

Una vez finalizada la explicación sobre los aspectos de la entrevista, se le orientó sobre las demás técnicas donde participaría con el propósito de recopilar los datos. Se le informó que la Respuesta Escrita Inmediata había que contestarla en forma escrita y que la misma iba a utilizarse para obtener información acerca del conocimiento que poseía sobre del contenido de la materia, del pedagógico y el especializado sobre la enseñanza de las matemáticas. Se le explicó que le tomaría alrededor de 20 minutos completar la misma. Además, se le informó que había que completar dos notas de reflexión una vez finalizadas dos clases, las cuales iban a proveer datos relacionados a las creencias sobre la enseñanza que tiene el maestro, al rol que debe desempeñar
el maestro, el rol que debe desempeñar el estudiante, sobre la naturaleza del aprendizaje y sobre el impacto del programa de capacitación profesional en las prácticas educativas del maestro. Se le informó a cada participante que la investigadora cotejaría documentos relacionados con el diseño e implantación del programa de desarrollo profesional MSP que tiene bajo su costodia la institución postsecundaria que desarrolló la iniciativa.

La investigadora se aseguró que el candidato entendiera el propósito del estudio y el alcance de su participación en el mismo. Por tal razón, hizo preguntas a cada participante para determinar si entendió el propósito, si conoce y entiende las técnicas de recopilación de datos y el tiempo que dedicaría a las entrevistas, a contestar las notas de reflexión y a la respuesta a la pregunta de la técnica Respuesta Escrita Inmediata. Una vez que el candidato expresó que lo entendió y deseaba participar, la investigadora procedió a recoger la firma en el documento de consentimiento informado (Apéndice I).

Se tomaron medidas para garantizar la confidencialidad de los participantes, entre estas, el uso de seudónimos como por ejemplo M1, M2, M3 para identificar a los maestros participantes. Además las técnicas de recolección de datos se identificaron con la E para la entrevista, con la NR para las notas de reflexión y con REI para la Respuesta Escrita Inmediata. De esta forma los documentos de los maestros participantes se identificaron como M1-E, M1-NR y M1-REI, así sucesivamente para los maestros identificados con los números hasta el seis. Medidas adicionales se tomaron en relación al programa de desarrollo profesional el cual se identificó como MSP (ver Apéndice J).

Todo documento del estudio se colocó y mantendrá bajo llave por 5 años bajo el cuidado de la investigadora. El material en computadora se mantiene con una contraseña que solamente conoce la investigadora. Luego de 5 años se triturarán los documentos y formularios que puedan
identificar a los participantes y los documentos en el archivo electrónico serán eliminados.

Solamente la investigadora principal tiene y tendrá acceso a los documentos.

La presente investigación representó riesgos mínimos para los participantes. El único aspecto que pudo haber surgido fue el cansancio. Ninguno de los participantes se retiró del estudio. La posibilidad de daño físico, mental, emocional o moral a las participantes estuvo reducida. Las experiencias de los participantes en esta investigación serán de beneficio tanto para ellos como para el programa de educación de nuestro país. Su participación favoreció la identificación de elementos para mejorar la educación continua del maestro y la enseñanza de las matemáticas. Los participantes aportaron al conocimiento relacionado con las características de alta calidad de los programas de desarrollo profesional y a la identificación de las estrategias que promuevan una enseñanza efectiva de las matemáticas. Además, los hallazgos proporcionaron información que le permitirá a los núcleos escolares fortalecer su capacidad para integrar nuevas soluciones a los procesos de la enseñanza y el aprendizaje. A través de la implantación de programas de desarrollo profesional caracterizados por ser continuos, sostenidos y basados en reflexión, el núcleo escolar puede construir la capacidad en el conocimiento del maestro, para el aprendizaje de los estudiantes y para el mejoramiento del currículo.

Análisis de datos

En la investigación cualitativa el análisis de los datos tiene un enfoque inductivo. A través de este enfoque el investigador identifica los datos particulares que ha recolectado y los codifica en temas o categorías (Thomas, 2006). De acuerdo a Thomas (2006) este tipo de análisis persigue varios propósitos: (a) condensar una gran cantidad de información en un formato resumido y breve, (b) establecer enlaces entre los objetivos de la investigación y los hallazgos derivados de la información recolectada y (c) desarrollar un modelo o teoría acerca de
la estructura subyacente que está evidente en los datos. En el análisis se da un proceso de reflexión acerca del significado de los datos recopilados, que se lleva a cabo para contestar las preguntas de investigación (Merriam, 2009). En ese proceso de encontrar el significado, el investigador consolida, reduce e interpreta lo que los participantes le han expresado o escrito o lo que él ha visto, escuchado o leído (Merriam, 2009).

Una de las etapas iniciales y necesarias para hacer un análisis exhaustivo es la exploración y codificación de los datos. La codificación es un proceso en el que se seleccionan y etiquetan segmentos de textos para establecer categorías que responden a la interpretación de los datos (Creswell, 2008). Creswell (2008) establece un proceso de codificación de cinco pasos que lleva al investigador a segmentar y etiquetar textos hasta formar descripciones amplias para establecer las categorías o temas. Dicho modelo fue utilizado de referencia en este estudio.

El primer elemento del modelo de Creswell es obtener un sentido general de los textos que surgieron a través de las estrategias de investigación. Lograr un sentido general en esta investigación requirió leer todas las transcripciones cuidadosamente, mientras se hacían anotaciones de las ideas que llegaban a la mente de la investigadora. Se seleccionó y cotejó un documento transcrito utilizando como referencia la pregunta, ¿de qué habla esta persona? Se consideró el significado subyacente y se hicieron anotaciones en el margen.

En el modelo de Creswell, una vez finalizada la lectura de todos los textos se procede con el proceso de codificación. En esta etapa se identificaron segmentos de textos y se les asignaron códigos para describir el significado de los mismos. Los códigos pueden referirse a procesos, actividades, estrategias, contexto o entorno, perspectivas de los participantes o relaciones y estructuras sociales. Después de codificar todos los textos se hizo una lista de los códigos para ir formando las categorías. Se agruparon los que fueron similares y se identificaron los
redundantes. Se redujo la lista de códigos a un número más pequeño. Esa lista de códigos se utilizó para volver a los datos. Se volvió a analizar para determinar si emergían nuevos códigos. Se identificaron las citas que apoyaban los códigos. Luego, se fue reduciendo la lista de códigos, agrupando códigos para formar una cantidad menor de categorías pero de mayor abstracción. Las categorías se fueron refinando hasta alcanzar el más alto nivel de abstracción. Se tuvo presente que las categorías fueran mutuamente excluyentes y que congruentes en el mismo nivel de abstracción (Merriam, 2009). Cada categoría estuvo apoyada por los segmentos de texto que fundamentaron la codificación. Estos trozos de textos se etiquetaron con el nombre de la categoría a la cual correspondían. Los mismos se identificaron con el seudónimo del participante, el segmento de texto en la transcripción y el título del documento donde se recogió el dato. Los mismos fueron necesarios para hacer la narrativa cuando se presentaron e interpretaron los hallazgos. La figura 2 resume este proceso de codificación de los datos.

![Diagrama de proceso de codificación](image)

Figura 2. Proceso de codificación de los datos (Adaptación de Creswell, 2008, p. 251)

Una vez se establecieron las categorías o temas como resultado de la tabulación se procedió a realizar el análisis exhaustivo de los hallazgos. El modelo de Wolcott (1994) se usó
de referencia para describir, analizar e interpretar los datos en esta investigación. El mismo establece tres elementos medulares: (a) la descripción, (b) el análisis y la (c) interpretación. Estos tres elementos se desarrollan en forma simultánea.

La descripción de los datos se condujo tomando en consideración el propósito de la investigación. Se representó información detallada del programa de capacitación, de los participantes y del contexto. Se adoptó el marco conceptual discutido en el capítulo II para proveerle estructura a la representación y análisis de los datos. A través del mismo se destacaron los temas que surgieron para contestar las preguntas de investigación una vez se codificaron los datos. En el estudio de caso los datos se interpretan en el contexto. Por tal razón, cuando se discutieron los hallazgos al considerar las categorías identificadas, se analizó el contexto que genera dicha categoría. En el reporte se incluyeron segmentos de textos que describen y evidencien la categoría. Se tomó en consideración un análisis cruzado (Bloomberg & Volpe, 2012; Merriam, 2009; Yin, 2009) entre participantes a base de las categorías identificadas y los diferentes contextos escolares que cada uno representa. Se incluyó una alineación entre las categorías establecidas en las respuestas de los participantes a cada una de las preguntas de investigación, aspecto que facilitó la triangulación de los datos. El segundo elemento del modelo de Wolcott (1994) es el análisis. Durante este proceso se identifican los aspectos esenciales recopilados y se interrelacionan unos con otros para explicar los conceptos o temas centrales que arroja la investigación. En el análisis los datos obtenidos pasan por una transformación (Wolcott, 1994). Durante ese proceso transformador los datos se reducen y expresan en otros términos en forma lógica, coherente y sistemática enmarcados en el contexto social, histórico, cultural y personal de los participantes. Una de las estrategias que sugiere Wolcott (1994) para abordar el análisis es la adhesión a un marco analítico. El modelo de Conocimiento matemático
para la enseñanza de Ball et al. (2008) se utilizó como marco de referencia para analizar e interpretar los datos. El mismo establece que el maestro de matemáticas debe desarrollar cuatro dominios de conocimiento del contenido para enseñar matemáticas: (a) conocimiento común del contenido, (b) conocimiento especializado del contenido, (c) conocimiento del contenido y estudiantes (d) y conocimiento del contenido y la enseñanza.

A través de la interpretación de los datos se le atribuyen significados a los hechos o textos encontrados durante la investigación. Las interpretaciones están fundamentadas en los hallazgos e interrelacionadas con las descripciones y el análisis, y consideran el contexto donde se lleva a cabo el estudio. Las disciplinas del saber que fundamentaron el estudio, en este caso los saberes sobre la enseñanza de las matemáticas y el desarrollo profesional del maestro arrojaron información para hacer la interpretación de los datos recolectados.

Las aportaciones de Creswell (2008) se utilizaron de referencia para llevar a cabo la interpretación de los hallazgos. Él sugiere revisar los hallazgos más importantes e identificar aquellos que responden a cada una de las preguntas que se establecieron. De este modo se provee al lector una visión general de los hallazgos. Considera además, que el investigador puede proveer reflexiones personales acerca del significado de los datos. La interpretación puede contener referencias de la literatura y de estudios pasados, demostrando cómo los hallazgos pueden apoyar o contradecir otros obtenidos en investigaciones pasadas. Sugiere además, comunicar limitaciones del estudio realizado y recomendaciones para investigaciones futuras. La figura 3 presenta un resumen del proceso que se llevó a cabo en la investigación para el análisis de los datos.
Figura 3. Proceso de análisis de datos

Credibilidad / validez

Toda investigación tiene que contar con cierto rigor para que los resultados sean tomados en serio dentro del campo de la comunidad investigativa. La validez y confiabilidad son los elementos que han identificado el rigor en el paradigma de la investigación cuantitativa. Sin embargo, se aplican en la investigación cualitativa con diferente connotación (Creswell, 2009).

Yin (2009) expresó que lograr una alta calidad requiere que el investigador incluya tanta evidencia como sea posible, que documente cada paso llevado a cabo en el caso de estudio que apoye los hallazgos e inferencias que haya realizado. Los investigadores que defienden este
paradigma se han dado a la tarea de identificar estrategias que aumenten la validez y confiabilidad de la investigación cualitativa. Las mismas se identificaron para ser incluidas en este estudio.

Maxwell (2012) indicó que la validez se refiere al reporte, conclusiones o inferencias que se hacen de los datos. Él describe tres tipos de validez a las cuales tiene que darle importancia el investigador. La validez descriptiva, la interpretativa y la teórica. La validez descriptiva se refiere a lo correcto de la narración o reporte que hace el investigador. Él establece una validez descriptiva primaria, y una validez descriptiva secundaria. En la validez descriptiva primaria se incluyen los elementos que se escucharon, se vieron, se tocaron en el momento y en el contexto, y se escribieron con exactitud.

El investigador reporta en forma objetiva la información que obtiene a través de sus cinco sentidos para lograr la validez descriptiva primaria. En la investigación que se realizó, la investigadora transcribió las palabras de las entrevistas tal y como las expresaron los entrevistados, de tal forma que se logre esa validez descriptiva primaria. También reportó en forma objetiva las respuestas escritas inmediatas de los maestros a la pregunta para explorar sobre el entendimiento de las matemáticas.

La validez descriptiva secundaria, que establece Maxwell (2012), busca determinar si lo que se escribió, pertenece a eventos físicos o de contexto que son inferidos de unos datos que en un momento dado fueron observables. En esta investigación el cotejo de documentos proveyó los datos para determinar la validez de la información obtenida de las entrevistas. El entrevistado ofrece información que ocurrió cuando el investigador no estaba presente. Por tal razón, el cotejo de documentos ofrece la oportunidad de revisar los datos que evidencien información que ofrece el entrevistado relacionado con las experiencias en el programa de
desarrollo profesional y de su práctica en la sala de clases. El entrevistado puede mostrar resultados de pruebas, documentos de avalúo, trabajos de los estudiantes, entre otros, para evidenciar algún comentario hecho durante la entrevista. En esta investigación algunos de los participantes mostraron fotos de las actividades educativas llevadas a cabo en el salón de clases.

La validez interpretativa se refiere al significado que le da el investigador a los eventos, objetos o conductas observadas en la validez descriptiva (Maxwell, 2012). La interpretación puede ser afectada por el conocimiento, las creencias o aspectos afectivos del investigador. En esta investigación se logra esta validez, en cuanto se hayan identificado durante el proceso de codificación, los temas que verdaderamente representaron los fragmentos de textos a los cuales los mismos definieron y que se sustentaron en el marco conceptual.

La validez teórica refleja hasta dónde los conceptos y categorías, y las explicaciones y relaciones que se establecen entre ellos son válidos. La aplicación del modelo para la codificación de datos de Creswell (2008) y el de análisis de datos de Wolcott (1994) sirvieron de referencia para alcanzar la validez teórica al analizar los datos en esta investigación. De igual modo, el modelo Conocimiento matemático para la enseñanza Ball et al. (2008) se utilizó como instrumento principal para identificar, explicar y establecer relaciones entre los conceptos que surgieron una vez codificados los datos. De modo idéntico, el marco conceptual que fundamentó esta investigación aportó a la interpretación válida de las categorías que se identificaron en el proceso de codificación de los datos. Además, el comité de disertación en su revisión y cotejo proveyó también para el logro de la validez teórica al interpretar los hallazgos.

El investigador tiene que emplear varias estrategias para cotejar la exactitud de los hallazgos (Creswel, 2009), y en consecuencia lograr la validez descriptiva a la que se refiere Maxwell (2012). La triangulación es una estrategia identificada para lograr la validez (Creswell,
2009; Merriam, 2009; Maxwell, 2012). En este proceso se pueden emplear una variedad de fuentes, de métodos, de investigadores o el uso de múltiples teorías para dar credibilidad a la interpretación de los hallazgos que se hayan encontrado (Merrian, 2009). Esto es para “reducir el riesgo de que la conclusión esté parcializada, o de las limitaciones que pueda tener una fuente o método, y para promover mayor entendimiento del problema que se está investigando” (Maxwell, 2012, p. 106).

En esta investigación los datos se recogieron a través de entrevistas, documentos, respuesta escrita inmediata y reflexiones del maestro. Además de entrevistar al maestro (fuente) se cotejaron documentos del programa de desarrollo profesional. Una amplia revisión de la literatura (se refiere a la teoría) sobre el conocimiento del contenido del maestro de matemáticas, sobre el cambio del maestro y sobre elementos de calidad de los programas de desarrollo profesional formaron el marco conceptual para el análisis e interpretación de los datos recolectados.

El proceso de triangulación de datos permitió realizar un análisis cruzado de los datos recolectados para cada maestro que representa el estudio de caso. Los datos se reportaron enfatizando el contexto correspondiente a cada participante. Se incluyeron las discrepancias identificadas, porque esto fortalece la credibilidad de los hallazgos (Creswell, 2009), ya que el paradigma cualitativo plantea que no hay una sola realidad, sino que pueden haber múltiples interpretaciones de un mismo evento que haya sido experimentado por varios individuos.

La estrategia de cotejo de miembros sirve para asegurar la validez descriptiva. Luego de realizar las transcripciones de las entrevistas se le permitió a cada una de las participantes leerla para que realizaran los cambios que consideraban pertinentes, en sus propias palabras. La validez interpretativa y teórica se logró a través de las revisiones del comité de disertación. La
revisión de pares es una estrategia (Merriam, 2009) que permite que educadores e investigadores con dominio de los temas examinen los procesos, descripciones e interpretaciones del investigador. El comité de disertación representó el grupo de expertos que revisó todos los procesos. Este comité estuvo formado por grupos de expertos en el campo de la educación, de la investigación y de la enseñanza de las matemáticas. Su dominio de estas áreas fortaleció la identificación de los temas y las categorías correspondientes y la interpretación de los datos recolectados.

La estrategia de descripción abundante se utilizó (Creswell, 2009; Houghton, Shaw, Casey & Murphy, 2013; Merriam, 2009) para transmitir los datos y evidenciar la transferibilidad. Esta estrategia permitió proveer una amplia descripción de los escenarios del programa de desarrollo profesional, de las prácticas de enseñanza y del perfil de cada uno de los participantes. Se discutieron los hallazgos tomando en cuenta el contexto. Se incluyeron fragmentos relacionados con diferentes perspectivas en término del contexto cuando se reporten las interpretaciones de los hallazgos. Los años de experiencia y la enseñanza por grado de los participantes fueron los criterios considerados para lograr una máxima variación (Merriam, 2009; Maxwell, 2012) como también para aumentar la transferibilidad. Se logró la variación en experiencia y en el grado de enseñanza que se esperaba que favoreció la diversidad de perspectivas.

El concepto de confiabilidad en la investigación cualitativa se refiere a si los resultados obtenidos son consistentes con los datos recolectados (Merriam, 2009). La autora recomienda la estrategia de audit trail, la cual es similar a un diario donde se escribe cada detalle de la investigación. Se redacta sobre cómo se recolectaron los datos, cómo se establecieron las categorías y las decisiones que se realizaron durante todo el proceso de investigación. Se tuvo el
audit trail como evidencia desde una vez aprobada la propuesta de investigación por el comité de disertación.

En los párrafos anteriores que correspondieron a este capítulo se hizo una descripción en forma específica de los componentes de la metodología cualitativa de estudio de caso que se emplearon para describir, analizar e interpretar el problema de investigación que se propuso. La investigación cualitativa de estudio de caso es un diseño que favoreció el foco de este estudio, que buscó describir e interpretar las experiencias de un grupo de maestros al participar de un programa de capacitación profesional, que representó la unidad de análisis, con el fin de mejorar el conocimiento necesario para la enseñanza de las matemáticas. Las diferentes estrategias para recopilar los datos reflejaron una imagen del significado que los maestros participantes del nivel educativo de cuarto al sexto grado le dieron a su experiencia. Las aportaciones de Creswell (2008) para codificar e interpretar los hallazgos, las de Walcott (1994) para el proceso de análisis de los datos, el modelo de Conocimiento Matemático para la Enseñanza de Ball et al. (2008) y los planteamientos que hace Maxwell (2012) para lograr la validez, fueron las referencias fundamentales que arrojaron luz a las contestaciones de las preguntas y al logro de los objetivos que se plantearon.
CAPÍTULO IV
HALLAZGOS

Este capítulo documenta los hallazgos de la investigación cualitativa de diseño de estudio de caso sobre el desarrollo profesional de maestros que enseñan matemáticas en los grados del cuarto al sexto en escuelas públicas de Puerto Rico. El propósito de la investigación fue explorar, describir y entender las experiencias de los maestros para desarrollar conocimiento del contenido para la enseñanza de las matemáticas, luego de haber participado de una iniciativa de capacitación profesional del programa Mathematics and Science Partnership (MSP). La organización del capítulo comienza con una descripción de la unidad de análisis, los participantes y las estrategias de recolección y análisis de los datos. Luego, se describen todas las categorías que surgieron del análisis de los datos y que permearon a través de toda la investigación. Al final, se vinculan las categorías que corresponden y contestan cada una de las preguntas de investigación. En el enfoque de discusión, se describen las categorías que contestan cada una de las preguntas, y la interacción de estas con otras categorías, que fortalecen cada una de las respuestas.

Unidad de análisis

La unidad de análisis de esta investigación fue una iniciativa del programa Mathematics and Science Partnership (MSP). Este modelo de desarrollo profesional se basa en una alianza entre el Departamento de Educación de Puerto Rico (DEPR) y una institución de educación superior reconocida y licenciada por el Consejo de Educación de Puerto Rico. El diseño del programa MSP debe fundamentarse en estrategias científicamente probadas dirigidas a incrementar el conocimiento del maestro en ciencias y matemáticas, y en las estrategias y
técnicas de enseñanza. Se persigue lograr el mejoramiento del desempeño académico de los estudiantes.

El programa MSP, que representó la unidad de análisis en esta investigación, ofrece los servicios en unos distritos escolares, todos ubicados en una zona geográfica que le asigna el Departamento de Educación una vez es aprobada la propuesta. Esta alianza de MSP con el DEPR comenzó en el año 2007-2008. La propuesta es aprobada para un periodo de 3 años, sin embargo anualmente hay que someter nuevamente una de continuación con su respectivo informe de logros. Desde el 2007, la institución de educación superior que tiene a cargo el desarrollo de esta propuesta, ha continuado ofreciendo los servicios de desarrollo profesional en ciencias y matemáticas a maestros de la zona geográfica que le asigna el Departamento de Educación de Puerto Rico.

Las propuestas sometidas desde el 2007-2008 hasta el 2013-2014 comparten muy pocas diferencias en cuanto a las áreas de desarrollo académico y las formas de desarrollo profesional que proveen a los participantes. Todas incluyen el desarrollo profesional en el contenido y pedagogía de las matemáticas, en tecnología y en investigación, desarrollada a través de todo un año, con más de 200 horas contacto. Además, los maestros reciben asesoría individualizada en la propuesta de investigación en acción. Con respecto al tipo de desarrollo profesional, todas ofrecieron talleres de contenido, conferencias, simposios, visitas de seguimiento y centro de recursos. Excepto en los años 2010-2011, 2011-2012 y 2013-2014, se llevaron a cabo actividades de desarrollo profesional en la modalidad de residencial. Todos los participantes en este estudio participaron en la propuesta de desarrollo profesional del año 2013-2014. Tres de los seis participaron en la del 2012-2013. Por tal razón, la mayoría de los hallazgos analizados en el
cotejo de documentos para establecer las categorías o temas responden a los años 2012-2013 y 2013-2014.

A través del análisis del informe de logros del año correspondiente al año académico 2012-2013 (Documento Informe de logros) se identificó que desarrollaron ocho componentes: (a) actividades en verano, (b) actividades sabatinas, (c) investigación en acción, (d) simposios, (e) residenciales, (f) curso con crédito, (g) visitas de apoyo y (h) centro de recursos. Los objetivos durante ese año fueron los siguientes: (a) desarrollar la investigación en acción en la sala de clases, (b) integrar la tecnología, (c) desarrollar material de contenido curricular, (d) promover la integración de las materias, (e) evidenciar el dominio de los conceptos en matemáticas, (f) que haya aumento del aprovechamiento de los estudiantes en las Pruebas de aprovechamiento académico e (g) integrar a los padres en el proceso educativo de sus hijos.

Los diferentes tipos de desarrollo profesional enfocaron una variedad de conocimientos. Los talleres de contenido desarrollaron temas sobre representaciones algebraicas, congruencia, semejanzas, espacio muestral de un evento, razonabilidad en los resultados, unidades de medida, conversión de unidades y transformaciones, entre otros. Durante las actividades del residencial se discutieron temas para integrar la astronomía a las matemáticas. Los centros de recursos aportaron al mejoramiento de las prácticas educativas al proveer módulos interactivos, manipulativos y carteles.

En el análisis documental de la propuesta correspondiente al año académico 2013-2014 se pudo evidenciar que la misma comparte los mismos objetivos que la anterior. La misma propuso el desarrollo profesional en las siguientes formas: (a) investigación en acción, (b) actividades en verano, (c) actividades sabatinas, (d) simposios, (e) cursos con crédito, (f) visitas de apoyo y (g) centro de recursos. El plan de talleres incluye los siguientes temas: (a) fracciones
y decimales, (b) expresiones numéricas y algebraicas, (c) variables, (d) conversiones, (e) representaciones geométricas y (f) encuestas. Se programó una conferencia sobre integración de la tecnología.

Participantes

La muestra de la investigación la constituyeron seis maestras de escuela pública que participaron entre los años del 2008 al 2015 en la iniciativa de MSP. Una de las participantes se reclutó en una de las actividades de desarrollo profesional de MSP en el año 2014-2015. Las otras cinco participantes se reclutaron mientras participaban de las actividades de desarrollo profesional de MSP en el verano del proyecto de 2015-2016. Se había propuesto hacer el reclutamiento de los participantes a través de la divulgación del anuncio que se preparó con ese propósito. Sin embargo, una vez divulgado el proyecto, la investigadora no recibió comunicación de maestros interesados en participar. Por tal razón, el recurso de MSP, contacto de la investigadora, autorizó a orientar a posibles participantes durante las actividades de desarrollo profesional de MSP en abril de 2015 y junio de 2015 y extenderles el anuncio previamente diseñado para hacer el reclutamiento. Una vez se orientaron, se identificaron los participantes que cumplieran con el requisito de haber participado en el programa MSP en cualquiera de los años desde el 2007 al 2014. Se seleccionaron los primeros seis que cumplieron con los requisitos de inclusión y aceptaron participar en forma voluntaria. De tal forma, que la muestra participante quedó constituida por seis maestras de las cuales, seis habían participado en el año 2013-2014, tres en el 2012-2013, dos en el 2011-2012, uno en el 2010-2011, dos en el 2009-2010 y uno en el 2008-2009. Todas las maestras habían participado en las actividades de capacitación del año 2014-2015. Cabe señalar, que los datos recopilados a través de las diferentes estrategias pueden responder a cualquiera de los años desde el 2008 al 2015. Todas las
participantes enseñaban matemáticas a estudiantes matriculados en el nivel de cuarto al sexto grado. Dos de las maestras enseñaban a estudiantes de la corriente regular, tres a estudiantes de educación especial salón recurso, y dos enseñaban a estudiantes de educación especial de salón contenido. La experiencia de las participantes enseñando matemáticas fluctúa entre 4 a 22 años, y ninguna tiene preparación académica de especialización en matemáticas. En la tabla 3 se resumen todos los datos demográficos de las participantes.

Recolección y análisis de datos

Se utilizaron cuatro estrategias de recolección de datos: (a) las entrevistas semiestructuradas, (b) las notas de reflexión, (c) la técnica Respuesta Escrita Inmediata y (d) el cotejo de documentos. Las entrevistas se hicieron entre los meses de abril de 2015 a junio de 2015. Una vez se finalizó cada entrevista, la investigadora coordinó la fecha para que el maestro cotejara y certificara la trascipción de las mismas. Todas las transcripciones fueron revisadas y certificadas por las participantes. Todas las maestros contestaron la Respuesta Escrita Inmediata una vez finalizaron la entrevista. Un total de cinco de las seis participantes entregaron las dos notas de reflexión. La maestra M1 completó las notas de reflexión en mayo del 2015. Las demás notas de reflexión corresponden a los meses de agosto y septiembre de 2015. Las propuestas e informes de logros sometidos al DEPR desde el año 2007-2008 al 2013-2014 y las propuestas de investigación en acción realizadas desde el año 2007 fueron los documentos disponibles para la revisión.

Una vez se recopilaron los datos, la investigadora los analizó siguiendo el modelo de Wolcott (1994). El mismo es un modelo de análisis de datos de tres fases: (a) descripción, (b) análisis e (c) interpretación. El modelo de Creswell (2008) se utilizó para hacer la codificación de datos.
Datos demográficos de los participantes

<table>
<thead>
<tr>
<th>Maestro</th>
<th>Años de experiencia como maestro</th>
<th>Años de experiencia como maestro de matemáticas</th>
<th>Grados en los que enseña</th>
<th>Nombramiento</th>
<th>Preparación Académica</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>25</td>
<td>6</td>
<td>5to y 6to</td>
<td>Elemental 4to al 6to</td>
<td>Bachillerato en educación nivel elemental</td>
</tr>
<tr>
<td>M2</td>
<td>12</td>
<td>12</td>
<td>4to y 6to</td>
<td>Educación Especial Salón contenido</td>
<td>Bachillerato en educación nivel elemental y en educación preescolar</td>
</tr>
<tr>
<td>M3</td>
<td>7</td>
<td>4</td>
<td>5to y 6to</td>
<td>Educación Especial Salón Recurso</td>
<td>Bachillerato en educación preescolar y Bachillerato en educación elemental K al 3</td>
</tr>
<tr>
<td>M4</td>
<td>20</td>
<td>5</td>
<td>4to</td>
<td>Elemental cuarto al sexto</td>
<td>Bachillerato educación elemental Bachillerato Inglés Maestría en Administración y supervisión escolar</td>
</tr>
<tr>
<td>M5</td>
<td>22</td>
<td>22</td>
<td>K-3 4to al 6to</td>
<td>Educación Especial salón recurso</td>
<td>Bachillerato en educación especial Bachillerato en educación elemental</td>
</tr>
<tr>
<td>M6</td>
<td>8</td>
<td>8</td>
<td>4to, 5to, 6to</td>
<td>Educación Especial salón contenido</td>
<td>Certificación elemental K al 3 Certificación en Elemental 4to al 6to Maestría en educación especial</td>
</tr>
</tbody>
</table>
El mismo facilitó la construcción de las categorías que dan sentido a los propósitos de la investigación. El proceso de codificación de los datos, se inició con las transcripciones de las entrevistas realizadas a los participantes. Las mismas se leyeron cuidadosamente en dos ocasiones para tener un sentido global de las respuestas. Luego, en cada una de las entrevistas por separado, se procedió a marcar en colores segmentos de textos que daban sentido a los objetivos de la investigación. Esos segmentos de textos se identificaron con descriptores o indicadores y con posibles categorías. Las notas de reflexión y la técnica Respuesta Escrita Inmediata apoyaron o proveyeron información adicional a los indicadores y posibles categorías que se identificaron en el análisis de las entrevistas de cada participante. Finalizado el análisis por participante, se procedió a hacer el análisis por pregunta de investigación. Para facilitar el proceso, se construyó una tabla por cada pregunta donde se identificaron y asociaron los segmentos de textos de cada maestro con las posibles subcategorías y categorías. La información sobre el desarrollo profesional y la enseñanza de las matemáticas así como el marco metodológico se usaron de referentes para dar sentido e interpretar los datos.

Evolución del maestro la ruta hacia una nueva identidad profesional

Una vez se analizaron los datos emergieron tres hallazgos significativos que permearon a través de toda la investigación: (a) el MSP contempla un diseño flexible que promueve el conocimiento para la enseñanza de las matemáticas, (b) el participante de MSP proyecta una imagen personal que lo encamina hacia la ruta de la transformación profesional y (c) el maestro participante va formando gradualmente una nueva identidad profesional mientras alinea sus prácticas de enseñanza con los nuevos conocimientos adquiridos en el MSP. El primero de los hallazgos conforma elementos del contexto del MSP que promueven el mejoramiento profesional del maestro y sus vínculos con el contexto escolar donde enseña ese maestro. El
segundo, identifica dos variables asociadas a la dimensión de la persona: (a) los aspectos de la persona que inciden en la efectividad del programa MSP y (b) el efecto del programa MSP en mitigar las inseguridades y aumentar los sentimientos de confianza en el participante. El tercero da relevancia a los elementos del quehacer profesional educativo que sustentan las iniciativas que ha comenzado el maestro en ruta a la definición de una nueva identidad. Las tres dimensiones identificadas, contexto, persona y el quehacer educativo interactúan unas con otras para la transformación profesional gradual de ese maestro. Por tal razón, en esta investigación la interrelación de estos tres elementos se unifica para formar una sola categoría, la cual se llamó Evolución del Maestro (figura 4). Las tres dimensiones identificadas tienen un rol protagónico en el andamiaje del programa MSP.

Figura 4. Relación entre las dimensiones de contexto, persona y quehacer educativo en la categoría evolución del maestro
Las dimensiones de contexto, persona y quehacer educativo responden en diferentes grados de magnitud a cada una de las preguntas de investigación. En consecuencia, los hallazgos de las cinco preguntas de investigación en este capítulo se contestan en forma interactiva. El contexto y los elementos de la persona forman dos ejes que lo sostienen y que trabajan con los elementos del quehacer educativo, definido principalmente por las prácticas de enseñanza, las cuales conforman el verdadero cambio del maestro. Elementos del contexto impactan a la persona y viceversa. La imagen personal que proyecta el maestro es un ingrediente de fortaleza para la enseñanza en la sala de clases. El andamiaje de MSP se alimenta de las experiencias del maestro en su quehacer educativo. Se sostiene, por lo tanto, que la interacción de estas tres dimensiones es el hallazgo principal identificado en el análisis de los datos. En este capítulo se discuten cada una de los temas que sustentan las dimensiones del contexto, la persona y el quehacer educativo como gestores de la evolución del maestro. Una vez, se finalize esta discusión, se presentarán en forma interactiva los hallazgos del contexto, persona y quehacer educativo que dan respuesta a cada una de las preguntas de la investigación.

Las actividades que se han desarrollado en el MSP han generado de manera gradual instancias de cambio del maestro en pos de alcanzar la verdadera transformación en el escenario educativo. Esas instancias de cambio se reflejan en la compatibilidad de las creencias con las demandas de la reforma de la enseñanza basada en estándares. Entre las creencias que promueve la reforma de los estándares están que todo estudiante puede aprender matemáticas si tiene acceso a una instrucción de calidad, y que la enseñanza efectiva requiere entender lo que el estudiante sabe y necesita aprender para entonces asumir el reto de enseñarle bien (National Council of Teachers of Mathematics, 2000). Los comentarios en la entrevista de la maestra M4 avalan creencias que apoyan esa enseñanza efectiva de la que se habla en la reforma de
estándares. Su comentario “en mi salón yo soy muy enfática que todos tenemos diferentes tipos de aprendizaje….que todos los niños son inteligentes, que aprenden a distintas velocidades” implica que hay que desarrollar enseñanza diferenciada para atender las necesidades de todos los estudiantes y poder enseñarles bien. De igual forma la expresión “esta generación es una generación que es un poquito más difícil de tú llegar a ellos…o sea, hay que motivarlos mucho” que hizo M3 es cónsona con el principio número tres del Diseño Universal del Aprendizaje (proveer formas para que todos los alumnos puedan sentirse comprometidos y motivados en el proceso de aprendizaje), y que implica creencias de la relación directa entre efectividad de la enseñanza y aprendizaje del estudiante.

La reforma de los estándares promueve además, la enseñanza para la comprensión y el entendimiento. El desarrollo conceptual es el foco de la enseñanza. Las expresiones de todos los maestros sustentaron la importancia tanto de los talleres de contenido como de las prácticas de enseñanza de enfocar el entendimiento del concepto antes que el procedimiento. La maestra M4 sustenta la enseñanza para el desarrollo del concepto cuando contesta “cuando yo enseño teoría tengo que enseñar con modelaje….yo tengo que trabajar mucho con concreto….y de lo concreto es que yo voy pasando a lo semi concreto hasta que llego a lo abstracto”. De igual forma, el énfasis del desarrollo del concepto se observó en los diagramas de árbol representados para enseñar el concepto de factorización prima (M5-REI), en el diseño de un mapa conceptual para representar la relación entre los conjuntos de números (M3-REI) y en la construcción de modelos de representaciones con papel de construcción para desarrollar el concepto de fracción (M4-NR).

La inclusión de situaciones de vida real en las prácticas de enseñanza para que sea pertinente a la realidad del estudiante representa conductas de enseñanza que están acorde con la reforma basada en estándares. Algunas de las propuestas de investigación en acción pusieron a
prueba la estrategia de solución de problemas con situaciones pertinentes a la vida del estudiante. Una de estas buscaba mejorar el aprovechamiento académico de los estudiantes en las operaciones de decimales y fracciones. En el diseño se integraron experiencias de vida del estudiante enmarcadas en la matemática del consumidor.

El cambio de perspectiva de varios de los participantes en cuanto a su dominio y seguridad para enseñar matemáticas en los grados de cuarto al sexto, es otro ejemplo más que sustenta esas instancias de cambio. Al respecto la maestra M1 expresa “porque a veces los maestros nos creemos que lo sabemos todo y que lo estamos enseñando y que así tiene que ser. Y ahora no, ahora sé….que hay otras estrategias, otras herramientas para llevarle la información al estudiante”. La maestra M4 respondió que fue bien frustrante su aprendizaje de las matemáticas durante sus años de estudiantes en la escuela elemental, intermedia y superior. Esta maestra comentó que llegó a cogerles odio a las matemáticas. Luego, al llegar a la escuela donde trabaja tuvo el reto de enseñar matemáticas a estudiantes de cuarto al sexto grado. Por tal razón se matriculó en MSP. Sus comentarios dan fe del cambio en su seguridad y dominio de las matemáticas.

Me siento más cómoda, a través de los profesores he aprendido, los enlaces que me pueden ayudar, a hacer mi clase más efectiva, desde las páginas de la Internet…Le estoy cogiendo un amor, ahora más que nunca a la geometría. A la geometría, siempre la vi como que algo…muy lejos. Que era difícil de entender, y ahora no. Ahora yo a ojo cerrado me atrevo (M4-E).

El aumento del conocimiento para la enseñanza de las matemáticas y la transferencia de los nuevos conocimientos en las prácticas de enseñanza son los indicadores principales que demuestran con certeza que MSP ha delineado una ruta hacia el cambio. La respuesta de M2
cuando se le preguntó si siente que domina ese contenido de las matemáticas establece adquisición de conocimientos para el desarrollo del concepto.

Porque uno piensa que domina, y tú dices si yo domino todo el material, pero me he encontrado con unas situaciones de estudiantes que no tengo como la herramienta para explicarle de otra manera, no encuentro por donde jugar, para que él lo entienda. Me di cuenta que lo aprendí así y así es que yo me lo sé. Entonces, pues ese no es un conocimiento bien de dominio. Porque si no lo puedo explicar de diferentes maneras, porque hay estudiantes que lo necesitan de otras maneras para poder llegar a lo que es ese conocimiento pues me doy cuenta ahí que no lo domino totalmente, porque lo sé explicar de una sola forma. Entonces ese proyecto me ha ayudado a ramificarme en eso (M2-E).

En la siguiente contestación se evidencia adquisición del conocimiento pedagógico.

Mira te he estado mencionando el uso de los lapbook, el uso de manipulativos que tuvimos tareas con cosas de bajo costo… y foldables… Hicimos un robot, ahora que mencionas los manipulativos. Hicimos un robot con las conversiones de medición, galón… (M3-E).

La transferencia del conocimiento a las prácticas educativas se observa cuando M5 hizo las siguientes expresiones al contestar sobre el impacto que MSP ha tenido en su salón de clases. “Y cuando los nenes, voy a la escuela y llevo las actividades que desarrollé aquí, los nenes se quedan sorprendidos y dicen Mrs. tú hiciste eso, Mrs. tú coges clases” (M5-E).

Cuando se da una transformación o un verdadero cambio en el maestro, este personaliza los nuevos aprendizajes para ponerlos en práctica. El cambio en el maestro se aprecia en las dimensiones conductuales, perceptuales, actitudinales y cognitivas (Pennington, 1995). El cambio duradero se observa cuando el maestro desarrolla destrezas para implantar cosas nuevas
(estrategias, currículo, metodología, actividades), reflexiona sobre las posibles consecuencias de sus prácticas de enseñanza y ajusta sus prácticas tomando en consideración los resultados alcanzados (Pennington, 1995). En resumen, lograr el cambio requiere que se alcancen altos niveles de profundidad del conocimiento para estimular la creatividad, promover la reflexión y el monitoreo de las prácticas de enseñanza del maestro, y del aprendizaje de los estudiantes.

Las manifestaciones que hicieron los maestros son reflejo de la evolución hacia el cambio al participar del programa. Sin embargo, al momento en que se llevó a cabo la investigación estos maestros continuaban en proceso de alcanzar la transformación. Según las expresiones en las entrevistas de todos los participantes, las experiencias en MSP le ayudan a desenvolverse como maestro de matemáticas, gracias a las ganancias en conocimiento del contenido de la materia y el pedagógico para enseñar matemáticas. Estas experiencias de los maestros están gestionando el camino hacia la transformación. En el momento en que se recogieron los datos en esta investigación todos los maestros habían participado del programa MSP un mínimo de 2 años (ver tabla 4). Sugiere este dato, que la evolución del maestro se visualiza en forma de espiral (figura 5). Ellos participan del programa, adquieren unos conocimientos, los transfieren a la sala de clases y regresan a buscar nuevos conocimientos. Esos nuevos conocimientos se transfieren de la misma forma en que fueron aprendidos o se dan algunas adaptaciones (M1-E, M6-E), según las necesidades de la sala de clases. La participación continua de las maestras en el programa está desarrollando gradualmente los conocimientos necesarios para implantar los estándares y expectativas del grado. La evolución en espiral va generando aumento en conocimiento para transformar la sala de clases y trazar la ruta hacia una nueva identidad profesional.
Tabla 4

Años en que los participantes se han capacitado profesionalmente en MSP

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>X</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M2</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M3</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M4</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M5</td>
<td>X</td>
<td>x</td>
<td>x</td>
<td>X</td>
<td>x</td>
<td>x</td>
<td>X</td>
</tr>
<tr>
<td>M6</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Figura 5. Interacción del contexto MSP y el contexto escolar en la evolución del maestro.

Hay que destacar que el contexto escolar donde los maestros se desempeñan tiene una función meramente instrumental que facilita los procesos para su participación en el programa.
MSP. Los líderes educativos de ese contexto no se involucran más allá de certificar la participación, completar la evaluación del maestro y completar los informes de logros para evidenciar el desarrollo profesional del maestro (ver tabla 5). Estos maestros llevan a la escuela nuevos conocimientos, desarrollan liderazgo, han mejorado sus prácticas de enseñanza y proyectan una imagen que estimula la búsqueda de la excelencia. En la medida en que en las escuelas se estimule la colaboración entre el maestro participante y demás maestros de la escuela para reflexionar, compartir ideas, trabajar en comunidades de aprendizaje y fomentar el liderazgo, el lado del espiral del contexto escolar se ampliará porque la participación en MSP redundará en beneficio de toda la escuela.

Tabla 5

<table>
<thead>
<tr>
<th>Maestro</th>
<th>Reseñas de los maestros</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1-E</td>
<td>“…ellos [personal Departamento Educación] solamente tienen el conocimiento, de que el maestro está participando de los talleres”.</td>
</tr>
<tr>
<td>M2-E</td>
<td>“Pero el Departamento de Educación no apoya, para mí no me apoya como en la sala de clases como tal. El apoyo lo he recibido como tal del proyecto”.</td>
</tr>
<tr>
<td>M3-E</td>
<td>“Bueno el Director me autoriza. Nada más”.</td>
</tr>
<tr>
<td>M4-E</td>
<td>“La respuesta es no. Yo tomo un taller como el que estoy cogiendo en verano, me siento con la directora y le informo...”</td>
</tr>
</tbody>
</table>

Contexto MSP. Los contextos para el aprendizaje auténtico reflejan la forma en que el conocimiento va a usarse en la vida real. La inclusión de tareas para la práctica genuina de la profesión, el acceso al modelaje de expertos y a asesores que van moldeando el aprendizaje del maestro, las oportunidades para explorar múltiples roles y perspectivas, para la colaboración de
los participantes y para la reflexión hacia el mejoramiento de las prácticas de enseñanza (Herrington & Herrington, 2007) son elementos inmersos en el programa MSP. Tales dimensiones le permiten abrazar un diseño para el aprendizaje auténtico del maestro participante. La autenticidad en el diseño se nutre de una sólida y variada estructura que provee para el fortalecimiento del conocimiento del contenido para la enseñanza de las matemáticas, y para la adquisición de destrezas en tecnología y de investigación. Además, favorece ambientes de aprendizajes participativos y vinculados a las prácticas inmediatas de enseñanza del maestro.

Estructura. El armazón que sostiene el MSP está compuesto por talleres, simposios, residenciales, visitas de apoyo y un centro de recursos. Las actividades de capacitación transcurren a través de un año comenzando en el mes de junio. Esto lo hace ser de larga duración y sostenido, características que definen a los programas de capacitación profesional efectivos. La duración extensa de la capacitación profesional provee para que haya más tiempo de trabajar los temas con profundidad. Esto aporta positivamente al desarrollo cognoscitivo para el desarrollo del concepto y adquisición de conocimiento pedagógico del maestro del nivel de cuarto al sexto grado cuya preparación académica no está certificada en matemáticas. Además, favorece que se intercalen en las actividades de capacitación situaciones reales que enfrentan los maestros en la sala de clases, aspecto que fomenta el aprendizaje auténtico. De igual forma permite que los maestros puedan ir implantado en la marcha los nuevos aprendizajes, y como parte del desarrollo profesional se intercalen reflexiones sobre esas experiencias que serían de gran beneficio para todos los participantes, a la vez que le añaden coherencia al programa MSP. La expresión de M2 sustenta los beneficios de larga duración de MSP, al indicar “entonces cuando estamos dando clases, la próxima semana uno siempre habla de cómo integró la
actividad, que te resultó, que no te resultó”. La característica de participación colectiva que tiene MSP favorece que se intercalen esas reflexiones.

En el año académico 2013-2014 los participantes se capacitaron en las actividades durante los sábados y el verano con cuatro recursos diferentes (Documento, calendarios sabatinos y de verano del año 2013-2014). La diversidad en los recursos que ofrecen la capacitación permite que los maestros estén expuestos a una variedad de formas, estilos y perspectivas. Según evidencian los calendarios de actividades sabatinos y de verano, se programaron un total de 72 horas de capacitación durante el verano y 102 durante las actividades sabatinas. Dichas actividades estuvieron dirigidas a ofrecer talleres de contenido, conferencias sobre estrategias de enseñanza, viajes educativos con enfoque en la investigación y simposios. Los talleres de contenido van dirigidos a maestros de una misma materia y nivel educativo. Este programa organizaba talleres de matemáticas y de ciencia en el nivel del cuarto al sexto, y de matemáticas y de ciencia en el nivel de séptimo al noveno grado. En cambio en la capacitación tipo conferencia, simposio, viaje educativo o residencial se integraban todos los maestros que participaban de la iniciativa, que incluyen a todos los participantes que enseñan matemáticas o ciencia en los grados de cuarto al noveno grado.

Talleres de contenido. Los talleres de contenido, foco de esta investigación, fueron los dirigidos a maestros que enseñan matemáticas en el nivel de cuarto al sexto grado. Tener maestros del mismo grado y la misma materia en los talleres de matemáticas sugiere un potencial de efectividad del programa. Esa participación colectiva de todos los maestros de matemáticas de cuarto al sexto grado de una misma región les dio oportunidad a los maestros de compartir ideas y de aprender unos de los otros. Cuando se le preguntó al maestro M1 si se le había dado la oportunidad de reflexionar durante los talleres contestó, “Aquí lo damos y compartimos todo
en las diferentes escuelas. Somos de la misma región, pero mira esto yo lo hago en mi escuela, el otro me dice, y si yo cojo ideas”. La maestra M5 informó que “yo tuve una compañera que nos enseñaron a hacer unos cometas…que la pude utilizar a ella como recurso para el desarrollo de esta estrategia”. Ambas expresiones son ejemplos de las ventajas de ofrecer talleres con la característica de participación colectiva y de oportunidades para el aprendizaje auténtico.

Las expresiones de los maestros en torno a los talleres de contenido sugieren que estos están estructurados en cuatro etapas donde se desarrollan actividades para (1) crear el ambiente e introducir el tema, (2) desarrollar el contenido (3) aplicar lo aprendido y (4) la evaluación y el cierre. Las actividades para crear el ambiente incluyen el saludo (M5-E), una reflexión (M3-E, M4-E, M5-E) y una dinámica de grupo (M3-E). En las actividades de introducción se identifica el tema (M2-E, M3-E, M4-E, M5-E, M6-E) de capacitación con sus objetivos del taller (M1-E, M4-E), se especifican los estándares y expectativas que aplican para los diferentes grados, (M3-E, M4-E) y se administra una pre prueba (M1-E, M3-E, M6-E). En esta etapa los maestros adquieren conocimiento curricular relacionado con el alcance y profundidad de un estándar y la expectativa en los grados del cuarto al sexto.

En las actividades para desarrollar el contenido se utiliza una presentación en Power Point. Esa explicación del contenido gira alrededor del desarrollo del concepto para lograr la comprensión primero del maestro y como consecuencia la de sus estudiantes. El uso y construcción de manipulativos y el diseño de juegos son las formas predominantes que utilizan los recursos para desarrollar el entendimiento del concepto. Durante el desarrollo conceptual el recurso dirige el proceso en la discusión dando oportunidad de intervención a los maestros y retroalimentando esos comentarios, dudas o aportaciones que hacen a través del desarrollo de las actividades para la comprensión del contenido. En esta etapa el recurso crea actividades para
modelar la forma en que ese contenido se enseña a los estudiantes. La dimensión del
conocimiento pedagógico toma protagonismo en la secuencia de la instrucción que el recurso
ejecuta a través de las actividades para demostrar cómo se enseña un concepto. Esa secuencia
diseña oportunidades para la construcción del conocimiento. El maestro aprende que no se le
provee la definición de un concepto al estudiante, sino que van creando oportunidades para que
el estudiante entienda y produzca una definición. En el comentario que hizo M1 se aprecia esa
secuencia cuando expresó:

Por ejemplo, antes el vocabulario era, que el estudiante escribe el vocabulario y le
dábamos las definiciones, escribir el vocabulario, se anota en la pizarra, ahora le damos
tarjetitas, y este, primero lo presentamos, después de la construcción del conocimiento,
presentamos y por medio de los foldables… (M1-E)

En las actividades de aplicación el maestro tiene la oportunidad de preparar un plan para
enseñar ese contenido a sus estudiantes. Dicho plan puede hacerse en forma individual o grupal.
De esta forma la organización del taller provee para que haya trabajo grupal y se modele la
colaboración de los participantes, aprendizaje que luego el maestro podrá trasladar a su sala de
clases. Durante la aplicación el maestro tiene la oportunidad de construir materiales, crear
actividades de avalúo sobre el tema estudiado o contestar y diseñar problemas verbales.

En la última etapa el maestro toma la post prueba. Además, completa una evaluación con
unas preguntas guiadas acerca de las actividades más y menos preferidas, acerca de cuánto
conocimiento adquirió y cuáles fueron los eventos que más aportaron a su evolución como
profesional de la enseñanza. Las expresiones que evidencian el formato de los talleres se
resumen en la tabla 6.
Expresiones de los participantes que avalan el formato de los talleres

<table>
<thead>
<tr>
<th>Maestro</th>
<th>Expresiones que evidencian el formato de los talleres</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>“Una presentación en Power Point… no, empieza con una prueba, una pre prueba, se explican los objetivos de la clase y luego entonces el uso de manipulativos para enseñarnos la destreza, manipulativos o assessment”.</td>
</tr>
<tr>
<td>M2</td>
<td>“De hecho creamos un, siempre al final del día, creamos un plan, que se alinea al estándar y a la expectativa donde tú desarrollarías lo que harías en tu sala de clases”. “Comenzamos con una presentación de power point, donde se dan todos los conceptos, discutimos ese tema, aclaramos dudas y realizamos una práctica. Por lo general creamos manipulativos, juegos, … alguna actividad para involucrarnos y poner en práctica eso”. “… se hace una evaluación del taller, donde usted escribe lo más que le gustó, lo que le gustaría mejorar, qué quieres aprender más, qué tuviste dudas, con unas preguntas guiadas y realizamos un plan. El plan, lo podemos hacer en grupo o lo podemos hacer individual, el plan”. “Aquí trabajamos en aclarar bien el concepto, le damos importancia a que el estudiante tiene que entender el concepto. No solamente realizar el ejercicio, sino entender el concepto”.</td>
</tr>
<tr>
<td>M3</td>
<td>“En todos los talleres se llena una hoja de evaluación donde tenemos derecho a comentarios” “…. nos registramos… Empezamos siempre con material de contenido. Vemos cuáles son los estándares, cuál es el tema. Una reflexión siempre… una dinámica de inicio. ….Cogemos la pre prueba… empezamos la reflexión y…el contenido. Donde repasamos todos esos conceptos. Vamos al estándar…Por ejemplo si estamos trabajando geometría, cual es el de cuarto, cual es el de quinto, y cuál es el de sexto grado”. “Si para ahí ver la profundidad de cada uno y vamos al contenido…vamos a los conceptos. Después que… repasamos todos los conceptos, entonces preparamos una actividad, la profesora nos trae una actividad que nosotros podemos aplicar con el estudiante, de ese tema”.</td>
</tr>
</tbody>
</table>

Tabla continúa
Tabla 6 (continuación)

<table>
<thead>
<tr>
<th>Maestro</th>
<th>Expresiones que evidencian el formato de los talleres</th>
</tr>
</thead>
<tbody>
<tr>
<td>M4</td>
<td>“…ellas comienzan con la introducción de la unidad, con el objetivo, explicando cuáles son los estándares que aplican para los distintos grados. Luego vamos a lo que es la explicación del tema. Ella explica el tema, el propósito, y… una de las cosas que comienza es una reflexión. … y luego viene la conceptualización y la aplicación. En la aplicación, ahí entramos nosotros. Que es, ya sea la construcción de materiales, ya sea el assessment, contestar pruebas (problemas) verbales porque eso es un área que tenemos que trabajar mucho”.</td>
</tr>
<tr>
<td>M5</td>
<td>“Bueno lo primero es ese calor humano. Cuando tú llegas, buenos días, cómo estás, para comenzar, lo segundo es esa reflexión que ella cuidadosamente escoge para iniciar ese taller, ese tema al unísono con esa reflexión” “Hay trabajo en equipo todo el tiempo” “Ella da su conferencia, verdad, ella va dirigiendo el proceso, de lo que es el taller y nosotros, hay un feedback” “Casi siempre al final se divide en grupos, para desarrollar, eso mismo, para crear los diferentes, desarrollar las diferentes destrezas, en base a los conocimientos y quizás, ideas que en diferentes grupos, se puedan desarrollar”</td>
</tr>
<tr>
<td>M6</td>
<td>“Cuando llegamos al inicio hacemos una pre prueba donde vamos a medir nuestros conocimientos, el tema que se va a dar ese día. Luego de la pre prueba, … empezamos con la teoría. La profesora trae una presentación en Power Point y nos la entrega también de manera digitalizada e impresa……...y comenzamos con la teoría…” “Luego de la teoría, pasamos a hacer actividades concretas…..Damos la teoría y luego… pasamos a lo concreto y creamos actividades. Luego… repasamos el material que dimos. Si aún queda alguna duda aclaran la duda y luego cogemos una post prueba”</td>
</tr>
</tbody>
</table>

En el cotejo de documentos se identificaron comentarios que evalúan en forma positiva los talleres. En los documentos de MSP se identifican como los más provechosos. Los mismos se clasificaron en comentarios sobre el estilo del recurso, sobre el aprendizaje activo y adquisición de conocimientos. En relación al estilo del recurso los comentarios enfatizaron en el dominio del contenido y calidad humana. Hubo muchos comentarios que valoraron de gran provecho una variedad de conocimientos para el desarrollo de contenido, pedagogía de las
matemáticas y para la integración de la tecnología. De igual forma comentarios positivos
evidencian la receptividad a la transferencia de los nuevos conocimientos a la sala de clases.

Dichos comentarios se resumen en la tabla 7.

Tabla 7

Comentarios identificados en la revisión de documentos que evalúan en forma positiva los talleres

<table>
<thead>
<tr>
<th>Sobre el estilo del recurso</th>
<th>Sobre el aprendizaje activo</th>
<th>Sobre la adquisición de conocimiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Forma en que dirigió taller” (Documento, Propuesta 2008-2009)</td>
<td>“las actividades…mantiene la atención de los participantes y podemos aplicar lo aprendido” (Informe de logros de 2010-2011)</td>
<td>“actividades que puedo aplicar de acuerdo al nivel de grupo” (Documento, Propuesta de 2012-2013)</td>
</tr>
<tr>
<td>“el profesor trabajó con nosotros los manipulativos y realizamos varios ejercicios” (Documento, propuesta 2008-2009)</td>
<td>“se aprende de maestros colegas” (Documento, Propuesta 2012-2013)</td>
<td>“creación de página, blogs” (Documento propuesta 2008-2009)</td>
</tr>
<tr>
<td>“disposición de la profesora para ayudar con las tareas” (Documento, Propuesta 2012-2013)</td>
<td>“actividades para hacer en el salón de clases “(Documento Propuesta 2012-2013)</td>
<td>“repasar conceptos de geometría y circunferencia y explorar nuevas técnicas de enseñanza como el video” (Documento, Propuesta 2011-2012)</td>
</tr>
<tr>
<td>“el compañerismo y humanidad del profesor” (Documento, Propuesta 2012-2013)</td>
<td>“la práctica constante con diferentes actividades”(Documento, Propuesta 2012-2013)</td>
<td>“aclaro conceptos que había olvidado” (Documento, Propuesta 2012-2013)</td>
</tr>
<tr>
<td>“me encantó, la profesora domina” (Documento, Propuesta 2012-2013)</td>
<td>“la práctica constante con diferentes actividades” (Documento, Propuesta 2012-2013)</td>
<td>“repasé sobre las inteligencias múltiples” (Documento, Propuesta 2012-2013)</td>
</tr>
</tbody>
</table>

Conferencias y simposios. En las conferencias mayormente se orienta sobre temas de investigación en acción y de estrategias de enseñanza. Según el informe de logros del año 2010-
2011, los maestros se orientaron en temas de investigación, en estilos de aprendizaje, integración curricular y en la enseñanza en el modelo instruccional versus el aprendizaje basado en problemas. En la propuesta del año 2011-2012 se programó la orientación sobre el tema de *Understanding By Design*. Se calendarizaron conferencias de investigación en acción tanto en los años 2012-2013 como en el 2013-2014 durante los sábados. En el año escolar 2012-2013 se calendarizaron seis secciones de 6 horas para cada una y en el año 2013-2014, siete secciones de 6 horas cada una.

Los simposios, según el calendario de actividades de los sábados del año 2013-2014, tratan temas educativos donde se integran maestros de ciencias y matemáticas. Uno de los temas tratados durante el año 2013-2014 estuvo relacionado con la ingeniería en estrategias innovadoras de enseñanza en matemáticas y ciencias, y otro sobre el rol del maestro como agente colaborador del padre en la transmisión de estrategias y alternativas de enseñanza efectiva a sus hijos en las materias de matemáticas y ciencias. En los simposios que se llevaron a cabo en el año 2013-2014 se ofrecieron conferencias sobre estrategias de enseñanza en las materias de matemáticas y ciencia. Esa es una oportunidad que tiene el maestro para adquirir información acerca de la integración curricular o articulación del conocimiento en las dos materias. Los conocimientos sobre la integración curricular favorecen la planificación con el modelo de *Understanding by Design* adoptado por el DEPR para el diseño de la enseñanza.

Residenciales. Los residenciales es una modalidad de desarrolla profesional que se desarrollan en MSP. Los mismos no se ofrecieron en todos los años. El cotejo de documentos proveyó información acerca de los temas que se han desarrollado en los residenciales. En el año 2007-2008 se profundizó en el tema sobre la diversidad en la educación (Documento, Propuesta 2007-2008). En el año 2008-2009 los trabajos giraron alrededor el tema de la integración de
matemáticas y ciencias (Documento, Informe de logros 2008-2009), y en el residencial del 2012-2013 se desarrollaron actividades para la integración de la astronomía en las matemáticas y ciencias (Documento, Informe de Logros 2012-2013).

Visitas de apoyo. La estructura de MSP contempla cuatro visitas de apoyo a los maestros. Esas visitas las llevan a cabo profesores mentores con dominio de los temas de investigación. Según los documentos de las propuestas, estas visitas de apoyo tienen el propósito de asesorar durante el desarrollo de la propuesta de investigación en acción, apoyar al maestro en la transferencia de los contenidos y evaluar la implantación de los nuevos conocimientos en las prácticas de enseñanza. Parece haber una confusión entre los participantes en cuanto al propósito de las visitas de apoyo porque algunos manifestaron que la asesoría era para la investigación en acción, aunque aceptaban haber recibido colaboración de los profesores mentores para el mejoramiento de la enseñanza (M1-E, M2-E, M3-E, M4-E). A través del análisis global de las entrevistas se corroboró que colaboran estrechamente con el maestro en el diseño de la propuesta de investigación y además en el desarrollo del conocimiento para la enseñanza de las matemáticas (ver tabla 8). Los maestros participantes muestran satisfacción con la asesoría recibida por los profesores mentores. Al igual, lo demuestran las reflexiones en el documento de propuestas de investigación en acción. Un ejemplo al respecto es el comentario, “aprecio mucho…tener la oportunidad de ser capacitada por los profesores mentores de este proyecto los cuales se muestran muy interesados y son agentes colaboradores nuestros” (Documento, Propuestas de investigación en acción). Las maestras M3 y M6 corroboran que esas visitas evalúan la implantación de los nuevos conocimientos en el escenario educativo de los maestros. Esas visitas de evaluación pueden ser un factor que favorezca la transferencia de los nuevos conocimientos, debido a que los maestros se esfuerzan por ser bien evaluados. En la tabla
8 se presentan las respuestas de los maestros que evidencian esa colaboración estrecha de los profesores mentores y el seguimiento a la implantación.

Tabla 8.

Expresiones de los maestros respecto a las visitas de apoyo

<table>
<thead>
<tr>
<th>Maestro</th>
<th>Expresión</th>
</tr>
</thead>
</table>
| M1 | “Ese coaching es específico para la investigación en acción”
 “Sí hay seguimiento…hacen cuatro visitas, este, al año.”
 “Primero, la primera visita, nos preguntan qué temas vas a investigar, en qué tema nos vamos a enfocar…si buscamos ya el teórico…tenemos que redactar las preguntas de lo que queremos investigar y ellos nos van guiando”.
 “…y cuando el muchacho fue que me está cotejando todo lo que tengo, cómo integro, que le enseñara un plan de la clase…”
 “Pero ellos están dispuestos, si tienes alguna duda, ellos te la aclaran. Te dan seguimiento”. |
| M2 | “…bueno tuve coaching, porque al hacer la investigación…va un profesor con doctorado a tu sala de clases cuatro veces en el año…Dónde estás en tu investigación, y ve una clase tuya y te da consejos, de cómo mejorar y aclarar dudas”. |
| M3 | “El coaching va dirigido directo a la investigación, pero depende de la persona que te toca, por lo menos la que me tocó a mí, pues me ayudó en todo. Ella observó una clase, ella vio una actividad que yo hice que le encantó…”
 “Sí el coaching también, nos vistan cuatro veces en el año, dos por semestre. Ellos ven lo que yo voy trabajando, la investigación en acción. Si tengo alguna dificultad…me ayudan, me dan ideas nuevas…me hacen preguntas dirigidas al programa. O sea, si yo he aplicado…los materiales o en qué los he usado…” |
| M4 | “Cuando le explico mis dudas buscamos en el calendario cuadramos qué día y qué hora nos podemos sentar a hablar…entonces, en ese coaching aclaramos las dudas que yo tenga, y él expone sus puntos de vista, y qué cambios yo tengo que hacer ya sea en mi clase, que me estoy preparando o en el trabajo investigativo que estoy haciendo actualmente.” |
| M5 | “No tanto para ayudarnos a planificar, si no para darnos dirección en cuanto a la investigación… Ahí es que ellos nos dan un poquito de refuerzo. Pero en base a eso pues…como son también personas… preparadas en las diferentes áreas, pues si tenemos alguna duda….Ellos también se las traen acá al proyecto.” |
| M6 | “Sí, hubo dos vistas para ver mi proceso de investigación en acción. Cómo yo estaba trabajando la investigación en acción y además ella estaba evaluando si yo estaba utilizando los materiales que me dan y los conocimientos que estoy adquiriendo si yo los estaba llevando a la sala de clases” |
Centro de recursos. Los centros de recursos son parte de la estructura de esta iniciativa. A cada escuela donde hay un maestro que participa en el programa se le asigna un centro de recursos. Está custodiado por el maestro o uno de los maestros participantes. En la respuesta a la pregunta ¿cómo el programa de desarrollo profesional ha impactado su salón de clases?, tanto M1 como M6 inmediatamente pensaron en el centro de recursos. La maestra M1 contestó:

El salón está lleno, mi salón está lleno de materiales, que yo no los tenía, no los tenía simplemente. Tengo armario, armario lleno de manipulativos, tengo una pizarra cuadriculada (expresión de alegría) que la puedo usar para coordenadas, el plano cartesiano, matemáticas, muchos materiales (M1-E).

La maestra M6 añadió:

Tengo un salón envidiable. Hello, todo el mundo quiere tener mi salón, porque tengo mucho recurso, mucho material, todo me lo dan en la propuesta. Yo tengo un armario que pedí en la escuela y está lleno de materiales que yo utilizo constantemente en la sala de clases (M6-E).

Las maestras M2 y M3 primero pensaron en el desarrollo del conocimiento de contenido y luego hablaron sobre los materiales. Las siguientes fueron sus expresiones: “Me ha impactado en cuanto a materiales… Ese aspecto de materiales, de yo tener esos juegos educativos porque el programa nos los provee” (M2-E). “…Este, todo los que nos han dado, todos los materiales que nos han dado. Tenemos una balanza de matemáticas. Bueno, que no tengo de medición, todo, prácticamente tengo todos los grupos de medición donde ellos los puedan ver” (M6-E). Los materiales que se proveen en el centro de recursos son una forma de motivación que tiene el programa para atraer participantes. La maestra M3 lo comentó cuando dijo “Eso fue una de las cosas que también que me motivó a venir, porque el Departamento no nos da materiales. O sea a
través de este programa tenemos materiales buenísimos, muy buenos”. Los materiales se aprenden a usar primero en los talleres según lo deja saber M5 y M6 cuando informan; “Ellos nos proveen hasta materiales para que nosotros que muchas veces son los mismos, que muchas veces utilizamos aquí para desarrollar esas destrezas” (M5-E). “Y todo ese material que nos van a dar a nosotros lo vamos a ir trabajando durante todo el año. O sea, que yo lo trabajo aquí y ya estoy loca por que llegue el lunes para yo llevarlo a la sala de clases, ve” (M6-E).

Los materiales del centro de recursos están disponibles para los demás maestros de la escuela según lo deja saber M5 cuando dice “Bueno en los laboratorios tenemos los materiales que provee el programa para que los maestros también participen, haga uso de estos, para impactar en la sala de clases, sí, ellos utilizan todos estos materiales” (M5-E). Al respecto M6 comentó “Tú tienes que estar pidiendo todo el tiempo a otros compañeros, y entonces la diferencia de ahora, que ahora ellos (se refiere a sus compañeros maestros en su escuela) me piden a mí. Ya yo tengo más que ellos” (M6-E). La maestra M4 añade “Entonces, pues como en este programa nos dan materiales… cuando planificamos la unidad le digo a mis compañeros, mira, estos son los materiales que yo tengo, yo te lo puedo prestar. Y entonces yo comparto mis materiales con mis compañeras…” (M4-E). Los maestros tienen participación en la selección de los materiales, aspecto que le añade coherencia a MSP, como lo evidencia M6 cuando expresa “incluso para este año nosotros seleccionamos con ella el material que nos van a dar” (M6-E).

Reclutamiento. El reclutamiento forma parte del contexto de MSP. El programa tiene un plan de divulgación que incluye visitas a las escuelas y a los distritos, anuncios y publicar una convocatoria en la página de Internet de la universidad. Además, el DEPR hace llegar a las escuelas una convocatoria divulgiendo todo el programa de capacitación informando de todos sus componentes. El programa tiene asignados unos distritos escolares que pertenecen a un área
geográfica según determinada por el DEPR. Entre las observaciones realizadas están que hasta el año 2014-2015 todas las maestras habían participado más de un año del programa de MSP. Una de las maestras (M5) ha participado desde que comenzó el primer proyecto. Otra ha participado 4 años (M1). La maestra M3 ha participado 3 años. Otro dato recopilado de las entrevistas deja ver que tres de las maestras se enteraron de la convocatoria a través de su escuela y tres a través de otros compañeros que habían o estaban participando del programa. No hubo uno solo que se haya enterado por gestiones realizadas en MSP. Esto plantea la interrogante en cuanto a que pueda haber dificultad para reclutar maestros para participar del programa. Por tal razón, continúan dándoles oportunidad a los que han participado. La continua participación de las maestras en el programa plantea que aunque han adquirido conocimiento y han mejorado como profesional de la enseñanza buscan conocimientos adicionales porque no han logrado el cambio necesario para enfrentarse al reto de la enseñanza con los estándares del nivel cuarto al sexto grado. Tal interpretación fue lo planteado en la figura 5. Se les ha dado la oportunidad de continuar participando porque hay espacios disponibles. Si no fuera así, entonces estos maestros tendrían que buscar otros programas de desarrollo profesional para llenar el vacío o enfrentarse con gallardía a los retos a través de la auto capacitación.

Conocimientos sustanciales. La esencia de MSP es mejorar la enseñanza de las matemáticas. Los talleres de contenido son el eje central que sostiene el aprendizaje del maestro. Estos estuvieron inmersos en actividades para adquirir conocimiento para la enseñanza de las matemáticas basada en estándares alrededor de dos semanas en verano y en sábados alternos a través de todo un año. La capacitación incluyó conocimiento especializado del contenido de matemáticas, conocimiento para diseñar la enseñanza de las matemáticas y conocimiento del currículo de matemáticas de los grados del cuarto al sexto. Estos participantes estuvieron
inmersos además, en actividades para el conocimiento pedagógico general definido por Shulman (1987) como aquel necesario para manejar y organizar la sala de clases y que trasciende más allá de la materia. Los participantes estuvieron además inmersos en conocimientos sobre tecnología e investigación en acción.

Conocimiento especializado del contenido de la materia. Este tipo de conocimiento es uno de los dominios identificados por Ball et al. (2008) que debe desarrollar el maestro para poder enseñar matemáticas. El contenido especializado se refiere al conocimiento de datos, a diferentes interpretaciones de un concepto, a las conexiones entre tópicos, y a los conceptos subyacentes en los procedimientos. En el año 2012-2013 tres de los maestros (M1, M3 y M5) se capacitaron en temas de patrones numéricos (Documento, Presentación sobre Patrones Numéricos, Geométricos y Símbolos). Entre las actividades trabajaron problemas para completar el patrón, discutieron estrategias para analizar ejercicios sobre patrones y diseñaron ejercicios sobre patrones. Además, desarrollaron conocimientos sobre paralelismo, perpendicularidad y simetría (Documento, Presentación sobre relaciones de paralelismo, perpendicularidad y simetría en el mundo real). En ese taller trabajaron con las definiciones de las rectas paralelas, perpendiculares y oblicuas. Hubo una actividad donde el maestro tenía que ir a la pizarra a discutir el tema mientras los demás maestros desempeñaban el rol de los estudiantes. Además, se identificaron diferentes formas de representar los conceptos en situaciones de vida real. Otros temas que se discutieron en el año 2012-2013 los cuales cubren los cinco estándares que establece el DEPR para la enseñanza de matemáticas fueron: (a) espacio muestral de un evento, (b) figuras congruentes y semejantes, (c) suma y resta de fracciones homogéneas, (d) razonabilidad de resultados matemáticos, (e) cómputo mental y escrito, (f) conversión de unidades de longitud y (g) uso de variables para simplificar expresiones.
Según los calendarios de desarrollo profesional, en el verano y los sábados del año escolar 2013-2014 (Documentos, Calendario verano 2013-2014, Calendario sábados 2013-2014) los maestros adquirieron conocimientos sobre los siguientes temas: (a) conceptos básicos de geometría, (b) razones y proporciones en el contexto real, (c) conversiones de unidades de peso y volumen, (d) los diferentes conjuntos de números, (e) perímetro y área de polígonos, (f) conjeturas en las operaciones con decimales, (g) la fracción como parte de números racionales, (h) la clasificación y medición de ángulos, (i) los diferentes sistemas de numeración decimal, (j) las fracciones como parte de un entero, como cociente y como razón; (k) utilizando la recta numérica, (l) modelos pictóricos, metáforas y analogías; (m) operaciones con números cardinales, fracciones y decimales para la comprensión lógica-matemática y (n) probabilidad utilizando la calculadora TI-Nspire.

Aunque todas las maestras han participado más de un año en el programa y los calendarios de los talleres llevados a cabo los sábados y durante el verano evidencian que se desarrollaron temas de los cinco estándares, la mayoría de las entrevistadas identificó en forma general por medio de las entrevistas los temas de matemáticas donde habían adquirido conocimientos. En la tabla 9 se presentan fragmentos de la entrevista para evidenciar esta afirmación. A pesar de que las maestras tendieron a mencionar el contenido en forma general, en las contestaciones a las demás preguntas se identificaron otros contenidos en los que habían adquirido conocimientos. Así mismo, en las demás estrategias de recolección de datos se pudo identificar una variedad de temas donde los maestros han ganado conocimiento especializado para enseñar matemáticas.
Fragmento de entrevista de las respuestas de los maestros al preguntarle sobre los conocimientos que habían adquirido para enseñar matemáticas.

<table>
<thead>
<tr>
<th>Maestro</th>
<th>Fragmento de la entrevista</th>
</tr>
</thead>
</table>
| M1 | Investigadora: ..describeme los conocimientos, temas, estrategias de enseñanza….
| | M1: “Pues, temas, por ejemplo, trabajamos con (pausa) factores, factorización…con el máximo común divisor, ella nos hizo una escalera, nos hizo unos *foldables*…
| | factorización, porcentajes, y el que estaba trabajando esta semana era, (pausa) no recuerdo. Esta semana usamos el círculo para saber, no, era el de porciento, probabilidad”.
| M2 | Investigadora: Esos temas que recuerdan…. de los temas que se trabajaron, en los talleres.
| | M: “Cogimos fracciones…..sistemas de medición….plano cartesiano…. coordenada…. fracciones, este, máquinas simples, máquinas complejas. Creamos máquinas con materiales a bajo costo….números naturales, números reales, recta numérica”.
| M3 | Investigadora: Describe los conocimientos, estrategias de enseñanza, que adquiriste en el MSP. (parece haber dudas en relación a la pregunta) ¿Qué conocimientos….?
| | Maestra: “Yo creo que sería más bien de todos los temas, afinar un poco más. De conocimientos todos, lo que pasa es que era como que activarlo”.
| | Investigadora: ¿Qué temas afinaste más?
| | Maestra: “Álgebra, medición, específicamente la medición. En álgebra que había como que unos detallitos, que no recordaba, estrategias..”.
| M4 | Investigadora: Describa los conocimientos, algunos temas o estrategias de enseñanza que has adquirido en el programa para enseñar matemáticas….
| | Maestra: “Es tanto que he tomado….estrategias de enseñanza, bueno”.
| | Investigadora: Trabajo en equipo…..
| | Maestra: “Bueno vamos a hablar con geometría…. Yo odiaba la geometría….he aprendido los distintos tipos de cuadriláteros que hay, sobre el rectángulo, las líneas paralelas, intersecante (intersección), perpendiculares, los tipos de ángulos, y entonces después que ya yo sé la definición de los conceptos…..”.
| M5 | Investigadora: En término de los temas que se han desarrollado, variedad de temas…
| | Maestra: “Bueno, …de trabajo de investigación…”.
| | Investigadora: ¿Y otros talleres de contenido de matemáticas?
| | Maestra: “Pues, si nos dan…. de numeración de operaciones, álgebra”.
| M6 | Investigadora: ¿En término de los talleres, en término de los temas que se han desarrollado en los talleres? Sí tú puedes recordar alguno de los temas.
| | Maestra: “Hemos trabajado con el plano cartesiano….con numeración y operación….con suma con resta, con multiplicación, con división. Hemos trabajado con álgebra”.

A través de las entrevistas se determinó que los maestros han ganado conocimiento para trabajar el estándar de numeración y operación en los temas de factorización, decimales, porcentajes, la recta numérica y conjuntos de números reales. Los temas de expresiones algebraicas, ecuaciones lineales y funciones le han dado conocimientos para atender el estándar de álgebra. En el estudio de los temas sobre cuadriláteros, líneas paralelas, líneas perpendiculares, el plano cartesiano, figuras planas y ángulos se dio atención el estándar de geometría. Los conocimientos relacionados al estándar de medición fueron las medidas del sistema inglés. Dos maestras (M1 y M4) informaron además haber estudiado temas para el estándar de probabilidad.

Las Notas de reflexión y la información en la Respuesta Escrita Inmediata evidencian conocimientos en los temas de operaciones con números enteros (M1-NR, M1-REI, M2-NR), determinar la circunferencia radio y diámetro del círculo (M1-NR), el conjunto de los números reales (M3-NR, M3-REI), identificar y representar decimales hasta la milésima (M3-NR) y relacionar fracciones y decimales (M4-NR), identificar puntos en el plano cartesiano (M4-REI), determinar la factorización prima de un número (M5-REI) y operaciones con números cardinales (M6-NR, M6-REI).

Hay que hacer notar que las contestaciones de la mayoría de las maestras en la Respuesta Escrita Inmediata y en las notas de reflexión fueron generales. En la Respuesta Escrita Inmediata las instrucciones solicitaban describir paso a paso las tareas de aprendizaje para desarrollar el concepto, el procedimiento, el razonamiento matemático y la(s) tareas de avalúo de un tema de matemáticas de los grados en que enseña. Además le sugería que identificara las estrategias, representaciones, materiales y ejemplos que utilizaría en la tarea para el aprendizaje. Según reflejado en la Respuesta escrita inmediata de M1, el conocimiento especializado en la
tarea era el concepto de números enteros y la destreza era la suma y resta de números enteros. La tarea para el desarrollo del concepto incluyó un organizador gráfico del conjunto de los enteros (figura 6). La maestra explicó que el estudiante tenía que dar “una definición relacionada con el concepto [enteros, positivos, negativos, cero, número]” (M1-REI).

![Diagrama de enteros](image)

Figura 6. Representación en el documento Respuesta Escrita Inmediata de M1

La descripción que hizo la maestra fue muy general por lo cual no estuvo claro cuáles fueron los acercamientos que utilizó para desarrollar el concepto, ni su dominio del conocimiento especializado sobre enteros. En cambio, una de las notas de reflexión M1 trataba sobre una clase de resta de enteros y se puede interpretar que sí hay dominio especializado de acuerdo a las siguientes anotaciones:

“Una recta numérica……los números positivos se encontraban en el lado derecho del cero y los negativos hacia el lado izquierdo”

“Repasamos operaciones inversas”

“Cuando se resta un número entero es lo mismo que sumar su opuesto”
En la Respuesta Escrita Inmediata de M2 el tema fue las figuras geométricas planas. El objetivo de la tarea era “identificar las figuras geométricas planas”. En la tarea para desarrollar el concepto M2 escribió: “presentación del concepto, definiciones, presentación de figuras planas. Realizar actividades para recortar, pegar, crear figuras planas”. Según explicó, los estudiantes usando un cuadro con tachuelas y liguillas iban a representar figuras planas y luego “forman la figura plana que les salga en una tarjeta”. Continuó diciendo que se le entregará al estudiante una hoja con dibujos de las figuras con sus nombres y características. No estuvo claro el dominio de M2 sobre el tema de figuras planas en términos del conocimiento especializado para enseñar el tema.

El tema de conjuntos numéricos fue el núcleo de la tarea de enseñanza de la respuesta escrita inmediata de M3. La maestra escribió que haría una exploración donde iba a presentar franjas con conjuntos y sus nombres para que los estudiantes las parearan. En la tarea para desarrollar el concepto indicó que usará una presentación en Power Point con las definiciones de los conjuntos numéricos, incluyendo desde los naturales hasta los reales. La figura 7 representa el foldable que iban a preparar los estudiantes. La figura demuestra dominio especializado de la relación entre conjuntos de números.

Figura 7. Diagrama que representa la relación entre conjunto de números en la Respuesta Escrita Inmediata de M3
El objetivo en la Respuesta Escrita Inmediata que redactó M4 era identificar cada cuadrante y el punto de origen del plano de coordenadas. En la tarea para desarrollar el concepto escribió: “el estudiante colorea, recorta y pega las partes del plano cartesiano”. Aunque el formulario tenía especificado un área para contestar lo que se pedía, la maestra anotó todas las demás actividades bajo el espacio de las tareas de aprendizaje para el procedimiento. La contestación de la maestra crea la percepción en la investigadora que esta tiene dificultad en diferenciar actividades para desarrollar el concepto, el procedimiento, el razonamiento y el avalúo.

La factorización prima y el teorema fundamental de la aritmética fue el tema desarrollado en la Respuesta Escrita Inmediata de M5. El objetivo fue aplicar las reglas de divisibilidad del 2, 3, 9, 16 y el teorema de factorización. Para desarrollar el concepto la maestra explicó el uso del árbol de factores. En su respuesta incluyó conocimiento especializado sobre la factorización prima evidenciado con las siguientes anotaciones: “la fila inferior del árbol contiene solo números primos”, “se hace uso de las potencias para simplificar las multiplicaciones repetidas” y “cuando un número es divisible por uno y por sí mismo se le llama número primo”.

El objetivo de M6 en la Respuesta Escrita Inmediata fue realizar suma de números cardinales. La maestra escribió “modelará varios ejercicios con la participación de los estudiantes. A través del uso de una recta numérica la maestra presentará varios problemas de suma” (M6-REI), como tarea para desarrollar el concepto. En la tarea para desarrollar el procedimiento escribió: “A través del uso de la recta numérica el estudiante realizará ejercicios de suma que se le van a presentar en un papel y que responderá en el mismo”. En la actividad de razonamiento matemático indicó que el estudiante responderá a problemas verbales de asuntos del diario vivir. La maestra no presentó ejemplos de los problemas. Nuevamente, parece haber
una confusión entre el concepto y procedimiento. A pesar de que pueda darse esa confusión la maestra M6 utiliza los problemas verbales del diario vivir y los mismos son útiles para desarrollar conceptos y razonamiento.

La técnica de Respuesta Escrita Inmediata solicitaba además ejemplos de problemas de matemáticas que el maestro utilizaría durante el avalúo. Los ejemplos al respecto serían útiles para determinar el conocimiento especializado matemático que habían ganado los participantes. Solamente la maestra M5 redactó claramente una tarea de avalúo en forma específica relacionado con el objetivo de la clase. Las maestras M2 y M6 identificaron el diario reflexivo, pero sin especificar las frases o guías que podrían utilizar para evidenciar el aprendizaje de los conceptos o procedimientos que se enseñaron a los estudiantes. La maestra M3 indicó que haría un “mapa de concepto con los términos estudiados, sus abreviaturas y sus conjuntos”. La maestra M1 escribió: “Pegar 2 hojas de papel de construcción de colores diferentes. Recortar cuadrados de 2cm. Utilizar los cuadrados para representar la suma o resta de diferentes ejercicios”. La maestra M4 no especificó la tarea de avalúo. Según considera la investigadora, la tarea de M4 que parece ser de avalúo fue “escribe en su libreta una reflexión sobre lo aprendido”. Excepto la maestra M5, la investigadora percibe que las demás maestras están gradualmente afinando el diseño de tareas de avalúo. Si las maestras continúan desarrollando el dominio especializado del contenido de las matemáticas, se espera que puedan enfrentar el diseño de tareas de enseñanza de mayor reto.

A través de expresiones durante las entrevistas, las maestras participantes acentúan que han desarrollado ese aprendizaje especializado del contenido cuando se les preguntó si sentían que dominaban el contenido de las matemáticas que estaban enseñando. La maestra M1 respondió que se sentía cómoda, preparada y firme para enseñar matemáticas en los grados del
cuarto al sexto. La maestra M2 añadió “Sí, yo me siento que lo domino y me ha ayudado realmente, este proyecto de MSP, me ha ayudado mucho”. La expresión “Me siento más cómoda, a través de los profesores he aprendido, los enlaces que me pueden ayudar, a hacer mi clase más efectiva”, es ejemplo de ese aprendizaje de la maestra M4. Por último, la maestra M5 recalcó “Pues, muy bien, bastante bien preparada, que vuelvo y le digo, esto es que constantemente tú tienes que estar reforzando lo que ya tú sabes”. En la tabla 10 se presenta un resumen de los temas de contenido identificados en tres de las estrategias de recolección de datos, donde los maestros expresaron o demostraron que adquirieron conocimientos.

Conocimiento pedagógico del contenido de la materia. Cuando el maestro utiliza diferentes formas para representar y formular el contenido de la materia de manera que sea comprensible para sus estudiantes demuestra que ha ganado conocimiento pedagógico. Shulman (1986) establece que este conocimiento es el que permite que el maestro pueda representar los conceptos a través de analogías, ejemplos, explicaciones, demostraciones, diagramas o ilustraciones. En el modelo del Conocimiento matemático para la Enseñanza desarrollado por Ball et al. (2008), el dominio del conocimiento del contenido y del estudiante, y el del conocimiento del contenido y de la enseñanza, ambos forman parte del pedagógico establecido por Shulman (1986). Las definiciones de Shulman (1986) y de Ball et al. (2008) se utilizan en esta investigación para interpretar los hallazgos del tema conocimiento pedagógico de la materia.

Gran parte de la capacitación de MSP se utilizó para que los maestros ganaran conocimientos sobre cómo enseñar el contenido de las matemáticas. Las actividades para el conocimiento pedagógico de MSP se enfocaron mayormente en ayudar al maestro a enseñar para mejorar el entendimiento conceptual del estudiante; en entender cómo el estudiante puede lograr la comprensión del contenido.
Tabla 10

Temas desarrollados para el conocimiento especializado del contenido

<table>
<thead>
<tr>
<th>Maestro</th>
<th>Entrevista</th>
<th>Respuesta Escrita Inmediata</th>
<th>Notas de Reflexión</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>“…trabajamos con (pausa) factores, factorización…con el máximo común divisor…porcentajes, y …. Probabilidad”</td>
<td>Operaciones con números enteros</td>
<td>Restar números enteros</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Identificar circunferencia, radio y diámetro.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Suma de números enteros</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Secuencia numérica con la recta numérica</td>
</tr>
<tr>
<td>M2</td>
<td>“Ese tema de las fracciones…hacemos hasta batida…, Este año yo tuve que darle ecuaciones…, Cuando estábamos hablando de lo que eran las funciones…”</td>
<td>Identificar figuras geométricas planas</td>
<td></td>
</tr>
<tr>
<td>M3</td>
<td>“Yo creo (conocimientos adquiridos) que…álgebra, medición, específicamente la medición. En álgebra que había como que unos detailitos que no recordaba. Y del otro lado… álgebra, expresiones y ecuaciones”.</td>
<td>Conjunto de números reales: identificar subconjuntos de números reales</td>
<td>Leer, identificar y representar decimales</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Identificar subconjuntos de los números reales</td>
</tr>
<tr>
<td>M4</td>
<td>“…los distintos tipos de cuadriláteros que hay, sobre el rectángulo, las líneas paralelas, intersección, perpendiculares, los tipos de ángulos….estamos en medición, probabilidad”.</td>
<td>El plano cartesiano, identificar cuadrantes y puntos</td>
<td>Representar fracciones y decimales</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Escribir números en forma usual, verbal y desarrollada</td>
</tr>
<tr>
<td>M5</td>
<td>“Pues….de numeración de operaciones, álgebra……en medición….actividades, en las fracciones preparamos…”.</td>
<td>Factorización prima</td>
<td>(La maestra no hizo las notas de reflexión)</td>
</tr>
<tr>
<td>M6</td>
<td>“Hemos trabajado con el plano cartesiano….numeración y operación….con suma con resta, con multiplicación, con división. Hemos trabajado con álgebra”.</td>
<td>Operaciones con cardinales</td>
<td>Identificar números ordinales</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Operaciones de suma usando la recta numérica</td>
</tr>
</tbody>
</table>
Según el comentario “Los maestros que llevamos un poquito más de tiempo tenemos un librito… y enseñamos de la misma forma, de la misma forma. Ahora yo estoy acá en los talleres y me enseñan otras formas de enseñarle y yo lo llevo al salón de clases”, la maestra M1 acepta que ha ganado conocimiento para poder enseñar un tema en diferentes formas, aspecto que se ubica en el reino del conocimiento pedagógico. De igual forma lo sostiene la maestra M2 cuando expresó, “...quise decir que el proyecto me ha ayudado a comprender un concepto claro y poder explicarlo de diferentes maneras con varios ejemplos para poder llegar a todos los estudiantes. Tú sabes que dominas un material si lo puedes explicar de diferentes maneras”. El formato de los talleres fomenta dicho aprendizaje porque el maestro tiene la oportunidad de asumir el rol del estudiante en el desarrollo de las actividades, como lo deja saber la maestra M6 cuando dice “…y en ese momento en que estamos trabajando es muy interesante porque nos convertimos en estudiante, o sea, yo me estoy poniendo en la posición de mis estudiantes”. El uso de herramientas y manipulativos para enseñar matemáticas, los conocimientos sobre la enseñanza diferenciada, los problemas verbales y situaciones de vida real constituyen el conjunto de estrategias que utilizaron los recursos para acrecentar el conocimiento pedagógico del contenido del maestro.

Los manipulativos fueron la herramienta por excelencia para desarrollar el entendimiento de los conceptos. En las actividades de capacitación del año 2013-214 (Calendario verano 2013-2014) se integraron manipulativos concretos, semi concretos y virtuales para aprender las tablas de multiplicar. Además, se trabajó el concepto de las fracción utilizando la recta numérica y modelos pictóricos. Muchas de las propuestas de investigación en acción que prepararon los maestros tuvieron el propósito de estudiar la efectividad de manipulativos en el desarrollo de conceptos. Algunos de los temas de investigación trataron los temas del uso de
Las maestras participantes en alguna forma mencionaron en las entrevistas los manipulativos como elemento clave utilizado por el recurso que ofrece los talleres para enseñar un concepto. Entre los manipulativos que se usaron o diseñaron en los talleres para conceptualizar la enseñanza de los temas, se identificaron los “foldables” (M1-Ey el M3-E), los “lapbooks” (M3-E), el diseño de un robot para enseñar unidades de medición y el diseño de biogramas para perímetro, volumen y área (M3-E). El uso de “foldables” (M3-REI), la construcción de un diseño de un plano cartesian (M4-REI), la utilización de bloques plásticos
para enseñar la suma de enteros (M1-REI), el diseño de un “index card” (M3-NR), la recta numérica y bloques para trabajar la suma (M6-NR), son ejemplos del conocimiento sobre el uso de manipulativos identificados en las estrategias de recolección de datos, la respuesta escrita inmediata y las notas de reflexión.

La reforma basada en estándares y el DEPR resaltan la importancia de que el maestro provea un proceso enseñanza y aprendizaje que atienda las necesidades académicas de todos sus estudiantes. No se enseña únicamente para el estudiante al que llamamos promedio. La planificación del proceso de enseñanza y aprendizaje tiene que proveer para la diversidad de estudiantes que hay en la sala de clases. Por tal razón es imprescindible que el maestro promueva **diferenciación de la enseñanza** basada en la aptitud, el interés y perfil de aprendizaje del estudiante. La concienciación y la implantación de activiades y estrategias para diferenciar la enseñanza fue un hallazgo que salió a relucir en las entrevista de los maestros M1 y M4. La maestra M1 respondió a una de las preguntas, “como tengo cinco estudiantes de educación especial tengo que ir ademá de individualizar, enseñanza diferenciada, también con ellos, con todo el grupo (M1-E)”. Dicha expresión refleja la creencia de que la sala de clases está impregnada por la diversidad, y por lo tanto, todos los estudiantes tienen el derecho de aprender. El próximo comentario que hace la maestra M1 parece implicar un cambio en conocimiento antes y después de su participación en el programa MSP cuando dijo:

Lo que pasa es que yo tenía una percepción antes, yo decía hay enseñanza individualizada, pero es la diferenciada también, que ahí viene con, yo tengo estudiantes dominicanos… Tengo estudiantes que tienen problemas de aprendizaje, de educación especial, es que la enseñanza diferenciada no es solamente para los de educación especial (M1-E).
Cuando la investigadora le pidió un ejemplo que evidenciar esa diferenciación, M1 proveyó un ejemplo que provee para la diferenciación del producto tomando en consideración la aptitud del estudiante.

Sí diferenciar. Por ejemplo, yo puedo dar un examen, un trabajo, que ellos definan, pero a otro estudiante le puedo poner las definiciones aquí, en el mismo papel para que ellos las tengan accesible y se le haga más fácil, pero están haciendo el mismo trabajo (M1-E).

Las expresiones de la maestra M4 parecen indicar que tiene conocimientos sobre la enseñanza diferenciada y en consecuencia provee para atender la diversidad en la sala de clases. El siguiente fragmento de la entrevista evidencia que la maestra diagnostica los estilos de aprendizaje para tomarlos en consideración al planificar sus clases:

Investigadora: “Cuando tú dices que tienes estudiantes que tienen diferentes formas de aprender, ¿algo así fue lo que dijiste?”

Maestra: “Sí”

Investigadora: “Ya que tú dices que estás bien consciente de que tienen diferentes formas de aprender. ¿Cómo tú provees entonces para que ellos puedan…?”

Maestra: “…Yo hago una lista…de distintos tipos de aprendizaje, y ellos van levantando su manita. Ejemplo. Yo le pregunto bueno, ¿cuántos de ustedes, del grupo o sea no importa la cantidad de 25 a 30, cuántos de ustedes les gusta aprender en forma musical? Y ahí yo voy tomando y observando donde se inclina más el grupo. Claro está, la mayoría de los estudiantes me van a decir, pues Mrs. ir al patio y practicar o hacer, x, y ejercicio, brincando, saltando, usando, ves, movimientos físicos. Pues ya yo tengo que modificar mi clase, a esa necesidad”.
Las **discusiones de problemas verbales o de situaciones de vida real** se utilizaron en MSP para desarrollar la conceptualización del contenido. Según el documento titulado Presentaciones, Patrones Numéricos, Geométricos y Símbolos, el cual que se utilizó en uno de los talleres llevados a cabo en el año 2012-2013, el recurso presentó un problema donde el maestro tenía que formar patrones con bolitas negras y blancas para formar collares. Además, en ese mismo documento se evidencia que se utilizó un problema verbal para escribir un patrón y su fórmula correspondiente teniendo como base una situación de vida real. Otra presentación que se utilizó en el año 2012-2013 para estudiar el tema sobre relaciones de paralelismo, perpendicularidad y simetría fueron los mapas de carreteras para identificar tipos de rectas (Documento, Presentación sobre relaciones de paralelismo, perpendicularidad y simetría en el mundo real). El taller Buscando Razones y Proporciones en el Contexto Real programado en las actividades educativas del año 2013-2014 refleja el desarrollo de actividades aplicando situaciones de vida real (Documento, Calendario 2013-2014).

Algunas de las propuestas de investigación en acción que se han realizado durante la vigencia del proyecto resaltan la inclusión de situaciones de vida real para trabajar los conceptos de matemáticas. En una de las propuestas el objetivo era mejorar el aprovechamiento académico de los estudiantes de quinto grado en la solución de problemas con operaciones básicas (Documento, Propuestas de investigación en acción). En el diseño se contempló la utilización de situaciones de vida real de los propios estudiantes. Otra propuesta de investigación en acción investigó sobre la solución de problemas verbales usando la publicidad y sucesos pertinentes del diario vivir.

Los viajes de campo le otorgan oportunidad al maestro de identificar recursos idóneos en escenarios reales para enseñar los conceptos. Es una oportunidad para el desarrollo profesional
que les provee MSP a los participantes. En el año 2013-2014 se calendarizaron dos viajes de campo, uno cultural y el otro científico (Documento, Calendario verano 2013-2014. Los maestros aprecian esta oportunidad porque les permite obtener información sobre escenarios más allá de la sala de clases donde pueden desarrollar en forma activa el aprendizaje de sus estudiantes. De igual forma, identifican ambientes donde se pueden proveer experiencias para vincular los conceptos que enseñan con el mundo real. Estas actividades se evidencian con los comentarios de varios maestros. Al respecto, la maestra M2 expresó, “hacemos como estudio de campo porque salimos y hacemos actividades también fuera del salón de clases” (M2-E). El comentario de la maestra M3 explica la importancia de estos viajes cuando dice:

...pero a la misma vez se dan dos viajes de campo, fuimos al Observatorio de Arecibo, fuimos al bosque, al parque [eco turístico]. Entonces, nosotros ahí vemos qué alternativas tenemos para nuestros estudiantes, para una excursión, o sea aprendemos primero nosotros, lo que hay, la charla cuáles son los recursos para entonces después, nosotros, verdad si nos interesa coordinar una con nuestros estudiantes….pero vamos con nuestros profesores…. pues integramos lo que están dando con nuestra área académica (M3-E).

Las representaciones matemáticas para explicar un concepto estuvieron presentes en sus diferentes modalidades tales como diagramas, visuales e ilustraciones en los temas de discusión para el desarrollo del conocimiento pedagógico. La maestra M3 lo informó con la frase, “O sea que también trabajamos el procedimiento de varias maneras, ya sea visual concreto (M3-E). En la nota de reflexión de esta maestra se evidencia el uso de representaciones utilizando papel cuadriculado para representar los decimales hasta la milésima (M3-NR). El conocimiento obtenido por M5 le permitió decir, “Ahora yo utilicé muchos materiales audiovisuales, video, materiales cuando los construye el estudiante o cuando, como MSP me
provee los materiales, a través de la propuesta. …pues los utilizo, ahora, número uno, los estudiantes aprenden más rápido (M5-E)”. La maestra M5 también utilizó diagramas de árbol para enseñar factorización (M5-REI). Las representaciones le facilitaron la enseñanza de las fracciones a la maestra M2 evidenciado por su expresión, “El ellos ejecutar ahí, dibujar, lo que es un medio más un medio, si lo sumas, qué hiciste, pues hiciste el completo. Ellos lo vean, como utilizar diferentes estrategias para que sea visual, para que sea creado, para que al que le guste dibujar dibuje, y así puedan entender lo que es ese concepto, que le estamos trayendo (M2-E)”. Por último la maestra M6 y sus estudiantes hicieron un mapa del tesoro que le facilitó la enseñanza sobre el tema del sistema de coordenadas (M6-E).

El desarrollo del razonamiento matemático se atiende a través de la tarea de enseñanza. En la estrategia de recolección de datos de Respuesta Escrita Inmediata se le solicitó al maestro que anotara tareas de aprendizaje para el razonamiento matemático. La respuesta de M1 lee: “Copiar ejercicios en la libreta y resolverlos haciendo dibujos, representaciones o recta numérica”. El objetivo que perseguía la maestra era que los estudiantes representaran sumas y retas con bloques plásticos. De otra parte la maestra M2 escribió: “Realizar ejercicios pareando figuras planas. Identificar figuras planas en el salón y explicar su uso e importancia en la vida diaria. Así también la maestra M3 escribió: “el estudiante realizará el ejercicio al inicio del pareo del término con el conjunto. Se discutirá el mismo y se aclararán dudas. La maestra M5 menciona una actividad donde los estudiantes iban a diseñar un libro de factores con diagrama de árbol. Por último, la maestra M6 anotó resolver problemas verbales.

A pesar de que las respuestas evidencian que se desarrolla el razonamiento matemático, parece ser que todavía hay dificultad en diseñar problemas con esos fines. Aunque en la Respuesta Escrita Inmediata se solicitaba que se identificaran ejemplos de los problemas
matemáticos que el maestro utilizaría, excepto M5, ninguna de las demás maestras diseñó algún problema para desarrollar el razonamiento matemático. Solamente se hicieron descripciones generales tal y como se presentó en el párrafo anterior. En la tabla 11 se resumen los conocimientos pedagógicos adquiridos por las participantes.

Conocimiento pedagógico general. El modelo de conocimiento para la enseñanza de Shulman (1987) incluye el conocimiento pedagógico general. El maestro que desarrolla este conocimiento utiliza una variedad de estrategias de manejo y organización de la sala de clases que transcienuden la materia. Los hallazgos reflejaron que las maestras desarrollaron el aprendizaje a través de actividades lúdicas que se modelaban en los mismos talleres.

La revisión de documentos evidenció una actividad lúdica usando el bingo para enseñar el concepto de simetría en uno de los talleres del año 2012-2013 (Documento, Presentación sobre relaciones de paralelismo, perpendicularidad y simetría en el mundo real). En el verano del año 2013-2014 se calendarizó un taller de 6 horas sobre los diferentes Sistemas de Numeración Decimal a través del desarrollo de actividades lúdicas. A través del diseño de las propuestas de investigación en acción los maestros se dieron la oportunidad de aprender más sobre esta estrategia de enseñanza.
Tabla 11

Evidencias para el desarrollo del conocimiento pedagógico del contenido de la materia en las estrategias de recolección de datos con los maestros

<table>
<thead>
<tr>
<th>Área</th>
<th>Según percibido en</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Entrevistas</td>
</tr>
<tr>
<td>Manipulativos</td>
<td>Diseño de manipulativos en los talleres, tales como foldables, lapbooks, index cards, bloques, rectas numéricas (M1, M2, M3, M4, M5, M6)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Diferenciación de la enseñanza</td>
<td>Diferenciar el producto (M1) Diagnostica y planifica a base de estilos de aprendizaje (M4)</td>
</tr>
<tr>
<td>Representaciones matemáticas</td>
<td>Visuales (M3) Audiovisuales, videos (M5) Dibujos (M2) Diagramas (M6)</td>
</tr>
</tbody>
</table>

Tabla continúa
<table>
<thead>
<tr>
<th>Área</th>
<th>Según percibido en</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entrevistas</td>
<td>REI</td>
</tr>
<tr>
<td>Situaciones de vida real</td>
<td>Mencionan viajes de campo (M2, M3).</td>
</tr>
<tr>
<td></td>
<td>Alimentos para presentar concepto de fracciones (M2)</td>
</tr>
<tr>
<td></td>
<td>Para funciones prepararon una mezcla con una licuadora (M2)</td>
</tr>
<tr>
<td></td>
<td>Aprender a hacer un huerto casero, …matemáticas (M3)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Las estrategias de recolección de datos con las participantes evidencian la adquisición de conocimiento sobre las actividades lúdicas para el desarrollo de la enseñanza. Los comentarios de los maestros valoran y aprecian esa oportunidad según evidencian sus comentarios. Una maestra indicó, “…pero me ha ayudado mucho esos ejercicios en forma de juego para ellos poder ver lo que era ecuación lineal (M2-E)”. Parece ser que se le hacía difícil lograr la comprensión del tema de ecuaciones y por tal razón valora haber tenido la oportunidad de obtener ese nuevo aprendizaje, que provoca unos mejores resultados en el conocimiento de los estudiantes. Esta maestra añadió, “Participé del congreso que fue en un hotel. Este, que ahí
aprendí lo que era el concepto de *Steam* que yo no lo había conocido, no lo trabajaba (M2-E)").

Su contestación refleja que se ha apoderado de un nuevo conocimiento que favorece sus destrezas como maestra y aplica en la sala de clases. La maestra M5 afirma que obtuvo mayor conocimiento sobre estrategias educativas con la expresión, “Estamos mucho más preparados porque nos hemos enriquecido de todo este tipo de actividades para desarrollar las destrezas ya sea con manipulativos, ya sea con juego (M5-E)”. En la respuesta de M6 se comprueba que en los talleres los maestros asumen el rol del estudiante, en este caso participando en actividades lúdicas, para aprender cómo desarrollarlas en sus prácticas de enseñanza:

Por ejemplo, el otro día estuvimos estudiando sobre los matemáticos… Así que esa clase fue bien interesante. Hicimos hasta juego, el de memory. Ella [el recurso del taller] nos trajo impreso las fotos de los matemáticos y la historia de ellos, entonces hicimos un juego de memoria, hicimos un juego de carta para adjudicarle a qué matemático pertenecía cada aportación (M6-E).

La implantación de propuestas de investigación en acción que estudian el tema del juego como estrategia de enseñanza sustenta la adquisición del conocimiento pedagógico general para enseñar matemáticas. Una de las propuestas investigó sobre la durabilidad del sabor del “chiclet” a través de un juego. El propósito de este juego era mejorar la enseñanza de la estadística en quinto grado. Según el diseño de la propuesta los estudiantes iban a recoger datos sobre el tiempo, preparar gráficas y tablas.

Conocimiento del currículo de matemáticas: Los documentos de estándares y expectativas del DEPR establecen los conocimientos y destrezas que los estudiantes deben alcanzar en cada grado y materia. La participación en el programa MSP les proveyó oportunidades a las participantes de adquirir conocimientos sobre la profundidad y alcance del
contenido curricular en los grados del cuarto al sexto. En los talleres los recursos presentaron ejemplos de cómo se enfoca un concepto en los diferentes grados. Las oportunidades de participación y colaboración de maestros que enseñaban en diferentes grados durante el desarrollo de los talleres permitieron que aprendieran unos de otros sobre el acercamiento apropiado para la enseñanza del estándar y las expectativas específicas de un grado. En la tabla 12 se evidencian los conocimientos de contenido curricular a través de las estrategias de recolección de datos de cotejo de documentos y de las entrevistas.

Conocimiento tecnológico: El programa dentro de sus actividades de capacitación provee conocimientos tanto para el dominio de herramientas tecnológicas como para la integración de la tecnología en las actividades de enseñanza. La expresión de M1, “…Porque yo no soy muy tecnológica. Estoy en ese proceso que también la universidad me está ayudando” (M1-E), lo confirma. Además, permite que algunos de los participantes tomen unos cursos de educación a distancia y se certifiquen como maestros a través de la web. La maestra M2 se benefició al respecto y sus expresiones reflejan cuánto ella valoriza el haber tenido esta oportunidad:

…Yo cogí unos cursos de educación a distancia, que a través del proyecto he podido accesar a unos cursos y tener unas certificaciones, que valida el Departamento de Educación, que son bien costosas, y que ahora yo tengo esos certificados, como profesional. Que se hacen a través de este proyecto. Eso también es un beneficio que yo he adquirido con el programa. Una certificación de maestra a través de la web. Tenemos una certificación de la web 2.0. Que tenemos conocimiento de lo que es la web 2.0 ahora. Podemos hasta dar clases en línea por una certificación que nos las dieron aquí (M2-E)
Tabla 12

Evidencia que sostiene la adquisición de conocimiento del contenido curricular de matemáticas

<table>
<thead>
<tr>
<th>Estrategia de recolección de datos</th>
<th>Evidencia percibida en</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cotejo de documentos</td>
<td>Presentación 2012-2013</td>
</tr>
<tr>
<td></td>
<td>Patrones Numéricos, Geométricos y Símbolos</td>
</tr>
<tr>
<td></td>
<td>Se presenta la expectativa para cuarto y quinto grado con su ejemplo correspondiente.</td>
</tr>
<tr>
<td></td>
<td>A.PR.5.4.2 Extiende y crea patrones con números, símbolos o figuras y sucesiones numéricas.</td>
</tr>
<tr>
<td></td>
<td>Ejemplo: Luis pudo pintar 2 cuadros en 3 semanas, 3 en 4 semanas, 4 en 5 semanas y 7 en 8 semanas. ¿Cuánto tardará en pintar 11 cuadros?</td>
</tr>
<tr>
<td></td>
<td>A.PR.4.4.5 Reconoce y analiza patrones de figuras geométricas que aumentan el número de lados, cambian su tamaño u orientación.</td>
</tr>
<tr>
<td></td>
<td>Ejemplo:</td>
</tr>
<tr>
<td></td>
<td>Presentación 2011-2012, Transformaciones</td>
</tr>
<tr>
<td></td>
<td>Se presenta el estándar: El estudiante es capaz de identificar formas geométricas, analizar sus estructuras, características, propiedades y relaciones para entender y descubrir el entorno físico.</td>
</tr>
<tr>
<td></td>
<td>Cuarto Grado</td>
</tr>
<tr>
<td></td>
<td>Expectativa: Identifica, compara y analiza atributos de las figuras bidimensionales y tridimensionales y describe las mismas en forma oral y escrita.</td>
</tr>
<tr>
<td></td>
<td>Ejemplo de Actividad: Identifica figuras simétricas y traza sus ejes de simetría.</td>
</tr>
<tr>
<td></td>
<td>Quinto Grado</td>
</tr>
<tr>
<td></td>
<td>Expectativa: Identifica, describe y clasifica las propiedades y las relaciones entre las figuras bidimensionales y tridimensionales.</td>
</tr>
<tr>
<td></td>
<td>Actividad: Identifica ejes de simetría de figuras planas, transformaciones (rotación, traslación, reflexión) utilizando modelos concretos y en plano cartesiano (primer cuadrante).</td>
</tr>
<tr>
<td></td>
<td>Sexto Grado</td>
</tr>
<tr>
<td></td>
<td>Expectativa: Construye transformaciones con figuras geométricas. Representa e identifica coordenada de puntos en el plano cartesiano (en los cuatro cuadrantes) cuyas coordenadas sean números enteros.</td>
</tr>
<tr>
<td></td>
<td>Actividad: Marca el punto W (3, 2) en un plano de cartesian. Si dibujas este punto W en las coordenadas (3, −2); ¿Qué transformación habrá ocurrido? (Utiliza la TI-Nspire)</td>
</tr>
</tbody>
</table>

Tabla continúa
Tabla 12 (continuación)

<table>
<thead>
<tr>
<th>Estrategia de recolección de datos</th>
<th>Evidencia percibida en</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entrevistas</td>
<td>“Siempre vamos alineados con el departamento de educación. Con los estándares y expectativas que se están dando, eso lo que nos enseñan va alineado (M2)”</td>
</tr>
<tr>
<td></td>
<td>“Talleres de contenido que vamos directamente y trabajamos alineados a los estándares. Estamos alineados (M3)”</td>
</tr>
<tr>
<td></td>
<td>“En este caso, ellas comienzan con la introducción de la unidad, con el objetivo, explicando cuáles son los estándares que aplican para los distintos grados(M4)”</td>
</tr>
<tr>
<td></td>
<td>“Por ejemplo, el otro día estábamos trabajando con la recta numérica, haciendo ejercicios con la recta numérica. Entonces ellos te dan la alternativa de que tú trabajes de acuerdo al nivel de tu población. El que estaba trabajando con un grado más alto pues podía hacer ejercicios de mayor dificultad y el que trabajaba con una población como la mía pues hacía ejercicios, tiene la flexibilidad de adaptarlo a la necesidad que tú tienes en tu sala de clases(M6)”</td>
</tr>
</tbody>
</table>

En la presentación del año 2012-2013 sobre Relaciones de paralelismo, perpendicularidad y simetría en el mundo real los maestros integraron la calculadora TI-Nspire para crear figuras geométricas y trazar los ejes de simetría. En las actividades de capacitación durante el año 2013-2014 en uno de los talleres se utilizó la TI-Nspire para enseñar conceptos de Geometría. En otro, se utilizó para trabajar el tema de medición, perímetro y área de polígonos. Además de conocimientos sobre el uso de la calculadora TI-Nspire, los maestros aprendieron a usar la pizarra electrónica (EM1-E). Una de las reflexiones en el informe de logros del año 2012-2013 lee, “accesar y trabajar con Excel”, evidencia de que se orientó sobre ese programado en uno de los talleres. En la propuesta del año 2013-2014 se programó el taller integración de las computadoras en las matemáticas.

En la presentación titulada Patrones Numéricos, Geométricos y Símbolos del año 2012-2013 el recurso integró material en la web para que los maestros practicaran ejercicios adicionales y que luego le serán útiles para integrar en el desarrollo de los temas con los estudiantes. Además, han tenido la oportunidad de capacitarse en los laboratorios de
computadora disponibles en la Universidad para identificarse enlaces que pueden integrar en sus clases. Es una actividad que valora la maestra M4 al expresar, “Y una de las cosas que disfruto es cuando vamos al salón de computadora….Vamos al salón de computadora y nos enseñan los enlaces en los cuales uno puede bajar y enseñarlos en la clase” (M4-E).

Conocimiento de investigación. Uno de los pilares del Programa MSP es proveer conocimiento sobre investigación en acción. El propósito de esta capacitación es que los maestros adquieran destrezas para diseñar investigaciones en acción que favorezcan el mejoramiento de las prácticas educativas. Estos conocimientos y el diseño e implantación de la propuesta de investigación en acción propulsan la reflexión para el mejoramiento de la enseñanza, aspecto que enriquece el quehacer educativo. El comentario “porque la investigación surge de ahí, de las necesidades que tienen los estudiantes y las limitaciones para desarrollar en base a las destrezas que, este, trabajamos aquí en el taller” (M5-E) sustenta que se da esa reflexión y se ponen a prueba alternativas en búsqueda del mejoramiento del aprendizaje de los estudiantes. Se evidenció que las maestras M1 y M2 cada una han hecho una investigación, la maestra M5 ha hecho dos investigaciones, la maestra M4 lleva una en proceso y la maestra M6 hizo una propuesta, pero no la ha implantado. Las investigaciones en acción estudian una variedad de estrategias para mejorar la enseñanza (Documento de Propuestas en investigación en acción). Entre las estrategias estudiadas identificadas están: situaciones del diario vivir para la solución de problemas, la efectividad de manipulativos en la enseñanza de conceptos, la efectividad de variadas tecnologías en el aprendizaje y el juego como estrategia de enseñanza para mejorar el aprovechamiento académico.

Según se evidencia en el documento Calendario Capacitación en el Año 2013-2014, en las actividades que se programaron los sábados se incluyeron alrededor de 36 horas de
capacitación en temas sobre investigación en acción. Estos temas incluyen, el planteamiento del problema y el propósito en una investigación en acción, el diseño y la metodología, la revisión de la literatura, las estrategias para la construcción de la investigación en acción, el marco teórico, y el análisis y los resultados. Las visitas de apoyo se programan mayormente para asesorar al maestro en el desarrollo de su investigación en acción y cada maestro recibe cuatro visitas al año en asesoría relacionado a los elementos del diseño de la propuesta.

Vinculado. Un programa de desarrollo profesional tiene mayor probabilidad de efectividad si su diseño es coherente con la realidad actual que vive el maestro (Garet et al. 2001). Las experiencias de aprendizaje del programa MSP se flexibilizan para incluir elementos del entorno escolar donde se desempeñan los maestros participantes. En el componente vinculado del contexto de MSP se identifican tres elementos: (a) actividades de capacitación contextualizadas; (b) experiencias en tiempo real y (c) apoyo individualizado al maestro.

Las experiencias contextualizadas son coherentes con los estándares y expectativas que establece el DEPR, tanto el contenido que se selecciona para las actividades de aprendizaje donde participan los maestros, como para el enfoque de enseñanza basado en la construcción del aprendizaje que predomina en las disposiciones de la reforma basada en estándares. Por disposición de los fondos las actividades tienen que estar alineadas a los estándares y expectativas del DEPR, aspecto que lo hace contextualizado. La organización del programa MSP requiere que cuando los maestros llegan en el verano a la primera reunión reciban un calendario ya preparado donde se identifican los temas a trabajar por fecha y hora. Se observó que es contextualización va más allá del protocolo de organización que requiere el programa de desarrollo profesional. Hubo flexibilidad en cuanto al calendario para la discusión de los temas a petición de los maestros. Así lo expresó M1 durante la entrevista:
Investigadora: ¿Se aborda el contenido y estrategias? ¿Qué se aborda?

M1: Las dos cosas. Por ejemplo, ellos crearon unos temas de acuerdo a unas destrezas pero nosotros le dijimos, mira como empezamos en tal mes, en septiembre por ejemplo, ya en ese mes se ha cubierto estas destrezas, si nos puedes dar mejor estas destrezas que son las que vamos a cubrir en estos otros meses

Investigadora: ¿Eso se lo dicen ustedes al conferenciante?

M1: Al coordinador

Investigadora: ¿Al coordinador o recurso?

M1: Sí. Para ir entonces con el mapa curricular, que nos den estrategias para nosotros bregar con lo que estamos trabajando realmente en el salón de clases.

Investigadora: O sea que ustedes le traen esa información para y entonces, tú observas que si lo han tomado en consideración.

M1: Sí

Investigadora: ¿Cuándo, lo traen a los recursos y al coordinador?

M1: Sí.

El componente en tiempo real provee para que el recurso integre aspectos profesionales inmediatos que son parte del diario vivir en la sala de clases, de forma tal que se establezca una conexión con la realidad que viven el maestro y sus estudiantes. El vínculo que establece el comentario de M3 deja ver que el maestro tiene oportunidades de hacer aportaciones de lo que pasa en su sala de clases, las cuales en alguna medida benefician la discusión para la capacitación de todos los presentes: “Los talleres no son solamente de un lado a otro. Sino, que ella [el recurso] nos traen el material,…nosotros también, mira yo he trabajado esto, yo he hecho esto” (M3-E). La maestra M4 puntualiza que se integran discusiones en los talleres de los
sábados en torno a lo que el maestro ha realizado durante la semana en su sala de clases:

“Aquí...yo comparto con mis profesores, nos descargamos, conversamos sobre nuestras inquietudes, sobre lo que hemos hecho durante la semana. Buscamos siempre de qué manera nos podemos ayudar” (M4-E). La maestra M6 informa que ella aplica inmediatamente lo aprendido en su comentario: “O sea, que yo lo trabajo aquí y ya estoy loca por que llegue el lunes para yo llevarlo a la sala de clases, ve” (M6-E). Además, menciona que en los talleres diseñan clases para implantarlas en sus salones. El comentario de la maestra M2 informa que en el programa MSP se hace un estudio de necesidades para identificar cuáles son los temas que los maestros van a estar utilizando en el año escolar con el propósito de atender el área académica en tiempo real y adquirir los materiales que apoyen el desarrollo de esos temas:

Pero sí, eventualmente, en otras reuniones te preguntan cuál es tu necesidad, cual es el grupo que tu atiendes, qué es lo que tú necesitas de materiales y nos piden sugerencias de temas, de materiales, para entonces, estar proveyendo la información y los materiales que realmente vamos a utilizar. ..Cuando llegas al salón de clases a los talleres individuales pues ahí sí te preguntan cuál es tu necesidad, cuáles son los materiales que necesitan, cuales son los temas que tienes dificultad de explicar (M2-E).

Las situaciones particulares e individuales relacionadas con sus prácticas o necesidades académicas que presentan los maestros son atendidas de inmediato en forma individualizada o integradas en los temas de discusión que se han diseñado. Aunque la maestra M2 dice que la “coach” fue asignada para dar apoyo en la investigación en acción, recibió de ella apoyo individualizado en el manejo de la sala de clases, como lo refleja el comentario:
Ella observó una clase, ella vio una actividad que yo hice…. Y me dio unas ideas para trabajar encima de ese proyecto. ….Así que aunque ellos van dirigidos a la investigación como quiera ven tu sala de clases, ven tus estudiantes y te dan ese apoyo” (M2-E).

La disposición para ayudar y colaborar del recurso que desarrolla los talleres de contenido es un elemento que promovió el apoyo individualizado. Los comentarios siguientes lo confirman:

Inclusive yo le puedo decir a la profesora, mira yo voy a trabajar este tema, ¿que tú crees?, y ella en la próxima clase mira yo tengo esto, esto, esto. Te lo envío por email, yo tengo algo allí que tú lo puedes trabajar” (M3-E).

…Porque una vez que yo tuve la información de que era lo que yo tenía que medir en mis estudiantes le traje a la profesora….mía de matemáticas… mi preocupación de que yo necesitaba prepararme para evaluar a mis estudiantes en esas destrezas y ¿cómo no?, ella sí me ayudó (M6-E).

Instancias de transformación. Las oportunidades para el aprendizaje activo y para la colaboración tuvieron el potencial de involucrar a los maestros en tareas para ir desarrollando destrezas de liderazgo. A través de esa colaboración los maestros comparten planes y prácticas de enseñanza con sus pares, ofrecen apoyo a otros maestros en la sala de clases, y algunos participan como adiestradores en la actividad de cierre que lleva a cabo el programa MSP. Tales oportunidades se identifican como las instancias de transformación que se van proveyendo a través de la participación en las actividades de desarrollo profesional.

La **colaboración de maestros** se observó en la planificación de actividades y preparación de materiales entre dos o más compañeros que participaban en los talleres. Al respecto M6 informó que en los talleres trabajaban en parejas y compartían conocimientos e ideas para
diseñar materiales que luego iban a utilizar en sus clases. Durante los talleres los maestros también tuvieron la oportunidad de presentar a los demás la forma en que enfocaban un concepto o tema, aspecto de beneficio para los demás según expresa M1 porque les da la oportunidad de conocer otros acercamientos que luego adaptarían en su sala de clases.

La experiencia que obtiene el maestro a través de su participación en MSP le permite comunicar, enseñar y compartir los nuevos conocimientos con sus compañeros maestros. La maestra M3 desarrolló su liderato cuando se convirtió en maestra de sus compañeros. Salió a relucir en la entrevista que el cambio de organización en la escuela requirió que algunos maestros que nunca habían ofrecido la clase de matemáticas tuvieran que hacerlo en ese año escolar. La maestra M3 entonces, se convirtió en coach de las otras maestras enseñándoles y ofreciendo clases demostrativas con los propios estudiantes. Esta maestra tuvo la oportunidad, además, de colaborar y aportar ideas en el diseño de planes de enseñanza con la maestra que domina la materia de matemáticas. Al respecto informó:

… Yo lo que hago es que me reúno con ella, ok ¿qué tema tú vas a trabajar?, fracciones, ah yo tengo una actividad excelente para fracciones mira, tengo esto, este lapbook, vamos a hacer esto, vamos hacer aquello. Ah yo te consigo la cartulina, de ahí pues las dos mano a mano (M3-E).

La maestra M4 ha tenido la oportunidad de desarrollar tareas que le desarrollan su liderazgo en su escenario de trabajo. Ella explicó que los viernes se reúne con otros compañeros para planificar la unidad de enseñanza. En ese momento ella comparte los materiales y determinan cómo van a integrarse en la planificación.

Las reflexiones de otros maestros que han participado en MSP sustentan las instancias de cambio (documento Propuestas de investigación en acción). Una de las reflexiones identificadas
leía, “algo que me ha ayudado mucho del proyecto fue que me brindó la oportunidad de conocer otros colegas con los cuales pude… y compartir experiencias y estrategias de trabajo en la sala de clases” (documento *Propuestas de investigación en acción*). En esta otra reflexión se aprecia como el compartir ideas entre maestros incide en el aumento de conocimiento y en aumentar las expectativas de logro de los estudiantes:

También al grupo de maestros que por dos semanas estuvimos compartiendo ideas y hoy puedo decir que me llevo a mi escuela…unos conocimientos, unas estrategias y un nuevo enfoque para desarrollar mi clase y así ver un cambio en mis estudiantes, distinto al año anterior (documento *Propuestas de investigación en acción*).

Algunos maestros han tenido la oportunidad de observar cómo otros compañeros que participan en MSP desarrollan actividades o talleres en sus respectivas escuelas (M5-E). Estos intercambios proveen para el desarrollo de destrezas de liderazgo. Un maestro tuvo esa oportunidad cuando sirvió de coach de la maestra M5 para el desarrollo de una estrategia educativa (M5-E). Cuenta además la maestra M5, que varios maestros asistieron a una escuela a observar estrategias de enseñanza que estaba implantado otra de las participantes del programa.

La oportunidad de realizar una investigación en acción provee para la identificación de problemas que afectan las prácticas de enseñanza y el aprendizaje de los estudiantes. Este componente tiene el potencial de desarrollar liderato porque los maestros participan como recurso en la actividad de cierre del programa al presentar a los demás participantes los hallazgos de su investigación. Les permite reflexionar sobre su trabajo e identificar alternativas que redunden en beneficio de sus estudiantes.

Ambientes de aprendizaje participativos. Uno de los aspectos significativos que salió a relucir en los talleres es que modelan ambientes de aprendizajes participativos. Los maestros
parecen estar la mayor parte del tiempo participando de actividades activas, compartiendo
experiencias con los demás compañeros, aportando ideas y diseñando planes o actividades. La
estructura de los talleres promueve esa participación activa ya que según identificado por los
maestros participantes se promueve la construcción del aprendizaje y una vez finalizadas las
actividades para el entendimiento del concepto el maestro planifica para aplicar lo aprendido en
la sala de clases. Esa planificación tiende a realizarse a través de grupos colaborativos, elemento
que le añade actividad a los ambientes de aprendizaje en los talleres de contenido. El comentario
de M1 evidencia esa creatividad cuando dice: “Sí, siempre hay materiales, para nosotros crear, la
construcción…” (M1-E). El comentario de M4 refuerza la actividad de crear cuando dice:
Y entonces después que ya yo sé la definición de los conceptos, vamos a la aplicación…
construimos nuestros problemas. Después de esa construcción, pues ahí a través de unos
problemas verbales, comenzamos a utilizar estos manipulativos, creados por el maestro.
Y entonces situaciones… en la cual tenemos que utilizar los manipulativos ya sean
creados o traídos por ella [se refiere al recurso] (M4-E).
La maestra M1 identificó el trabajo de grupo en su expresión “hacemos también…grupitos”, al
igual que M6 cuando dijo, “a veces podemos hacerlo [el trabajo] en pareja y a veces individual”.

Las actividades de cierre del proyecto en mayo promueven esa participación activa. En
dicha actividad los maestros participantes son los recursos y hacen presentaciones sobre los
hallazgos de su investigación en acción. Es una oportunidad además para el desarrollo del
liderazgo y de obtener nuevos aprendizajes sobre investigación en acción.

Persona. El elemento persona se identificó desde tres perspectivas: (a) imagen que
proyecta el maestro, (b) el sentido de confianza personal y (c) consideraciones hacia la persona
en el desarrollo de MSP. A través de las entrevistas se identificaron unas características
predominantes en todos los participantes. Dichas características le dan forma a una imagen que proyecta el maestro participante. El contexto MSP y la imagen se alían para fortalecer las prácticas del maestro en ruta hacia el cambio.

Imagen del maestro. Los comentarios de los maestros identificaron elementos de su personalidad, de sus creencias y de sus ejecutorias en el contexto escolar, que se consideraron muy significativos para el éxito de las actividades de desarrollo profesional. Durante los diálogos en las entrevistas la investigadora fue descubriendo que estas maestras proyectaban unas características positivas que tenían un gran peso en la efectividad de MSP. Esas características proyectan y definen una imagen. Estas maestras aceptan que tiene limitaciones en el campo profesional en el cual se desempeñan y son receptivas a nuevos aprendizajes. Se caracterizan por tener disposición y por romper barreras para mejorar sus prácticas. Además, ese deseo y búsqueda de aprendizaje, es porque han hecho un pacto con el aprendizaje de sus estudiantes.

Unos de los aspectos que surgen de las entrevistas es que la mayoría de las participantes reconocen sus limitaciones en conocimiento para enseñar matemáticas. El reconocer que tienen limitaciones es uno de los primeros pasos que las anima a buscar alternativas de mejoramiento. La maestra M1 reconoce que tenía deficiencias como maestra, y entra al programa para mejorarlas. La maestra M2 acepta que tenía lagunas en los temas de álgebra y geometría. La maestra M3 identifica a la medición como su talón de Aquiles. La maestra M4 estableció que “la geometría, siempre la vi como que algo, esto, muy lejos. Que era difícil de entender, y ahora no”. Al igual, la maestra M6 cuando expresa que “casi siempre yo tengo mucha dificultad para contestarla [la pre prueba]. Estas son expresiones valientes, que los hacen reconocer que necesitan de ayuda profesional para atender a los estudiantes en una forma adecuada e
informada. La expresión de M5 cuando se le preguntó con relación al dominio de las matemáticas fue: “Pues, muy bien, bastante bien preparada, que vuelvo y le digo, esto es que constantemente tú tienes que estar reforzando lo que ya tú sabes”. Según su respuesta, considera que domina bastante, pero su participación en el programa por más de 5 años refleja ese deseo de obtener mayor dominio del conocimiento para enseñar matemáticas.

La disposición fue un hallazgo que le da forma a esa imagen proyectada por el maestro participante. Estar dispuesto puede emplearse para ejecutar un propósito, o para evitar o atenuar un mal (Real Academia Española, 2015). La maestra M1 demostró disposición para atenuar un mal cuando escogió el reto de ofrecer la clase de matemáticas, una vez se retiró la experta que ofrecía dicha clase, a lo que se habían negado otros maestros de su escuela. La disposición para ejecutar un propósito se identificó a través de las respuestas a las entrevistas de varios maestros. Se observó en la respuesta de M1 al indicar que por iniciativa propia comparte sus conocimientos y se brinda a orientar a otros compañeros en su escuela sobre aspectos de desarrollo profesional. La maestra M2 entiende que involucrarse en este desarrollo profesional le exige trabajo adicional, en su casa y sus días libres pero tiene un valor incalculable en su formación profesional. La búsqueda entonces de mejorar su formación como maestra viene a constituir esa ejecución del propósito. De igual forma M3 escogió tener “satisfacción increíble” como participante del programa versus el tener tiempo libre para estar en tu casa, para descansar o llevar a cabo otras actividades en el tiempo disponible. Según expresa M5, la propia participación de MSP es un reto porque es algo más que cumplir con unas horas, debido a que las expectativas que establece el programa se dirigen hacia la extensión del conocimiento del maestro y hasta donde sea posible que estos completen otros grados académicos.
La receptividad de estos maestros a nuevos aprendizajes es otro elemento que forma parte de la imagen. La maestra M1 expresó que participó de unos talleres sobre la redacción de ítems para las pruebas puertorriqueñas del próximo año, manifestando además su disposición de llevar esa información a los demás maestros de su escuela. La maestra M2 no solo participó de desarrollo profesional sobre la nueva planificación, sino que se reunió con otros compañeros y compartió dicha información. Además, también adquirió conocimientos sobre tecnología. La siguiente expresión de la maestra M2 refleja ese compromiso y receptividad a los nuevos aprendizajes cuando dice:

Que tenemos conocimiento de lo que es la Web 2.0 ahora. Podemos hasta dar clases en línea por una certificación que nos las dieron aquí. Obviamente te quieres comprometer con otras horas, es más trabajo, pero es gratis, y tengo mis certificaciones (M2-E).

Tomar iniciativas buscando y leyendo las convocatorias que hace llegar el DEPR a las escuelas es una actividad que demuestra la receptividad a nuevos aprendizajes de M4. De esta forma fue que se enteró de la iniciativa MSP, como lo comunica, en su expresión “estoy pendiente…de lo que ocurre alrededor, en mi etapa como maestro… y leyendo en la página del Departamento de Educación los talleres que ofrecían… me atreví…. a tomar el reto de actualizarme” (M4-E). Esa receptividad a los nuevos aprendizajes no es solamente con adquirir conocimiento relacionado a su área de ejecución profesional sino en valorar y apreciar el contenido de conocimiento de otras áreas. Ese aprecio fue constatado cuando M4 dijo:

Y este año tuvimos una charla sobre como los niños preescolares aprenden, Ya que soy elemental pues puedo tener una base, sobre como el niño preescolar aprende. … y eso pues nos ayuda a reflexionar y hacer también un ajuste en nuestra enseñanza en el currículo (M4-E).
Se reflejó además en la expresión de M6 cuando dijo: “Yo no acostumbro a dar álgebra en el salón de clases, pero pasar por la experiencia siempre es buena y siempre es de aprendizaje”. Según la maestra M5, hay que estar constantemente preparándose y reforzando los conocimientos. Ella ha participado por más de 5 años corridos en las actividades de MSP. Según dice, “yo vengo aquí todos los sábados y vengo en el verano y siempre aprendo algo”, demuestra tener un alto sentido de receptividad a los nuevos conocimientos.

La participación de los maestros en las actividades de desarrollo profesional va más allá del compromiso con adquirir nuevas herramientas para mejorar la enseñanza en su sala de clases. Ellos hacen **un pacto con el aprendizaje de sus estudiantes**. Es lo que los mueve a estar alrededor de más de 200 horas durante todo un año participando de esta iniciativa. En el comentario, “Sí, para mejorar profesionalmente, verdad, y cómo transmitirle ese conocimiento a los estudiantes” (M1-E), se refleja la perspectiva de la maestra en cuanto a sus dos objetivos, mejorar ella y sus estudiantes. Esa perspectiva la comparte también la maestra M3 que enseña estudiantes de educación especial y acepta que “a veces es un poquito difícil llegar a ellos (M3-E). Por tal razón, su motivo para participar del programa fue adquirir “nuevas herramientas para trabajar con los estudiantes” (M3-E). De igual forma el motivo principal de participación en MSP de la maestra M6 fue prepararse para el proceso de evaluación alterna. En su expresión: “hacer un excelente trabajo durante el proceso de evaluación alterna, y de que mis estudiantes, que no tienen ese nivel cognitivo de un estudiante de cuarto grado pueda lograr entender de la manera más independientemente posible lo que yo tengo que darle”, se refleja la persistencia en aprender para que sus estudiantes aprendan. En sus expresiones dejó ver que tanto ella como sus estudiantes tienen un reto en el desarrollo de las pruebas de evaluación alterna, ya que ella tiene que diseñar las actividades que va a realizar con el estudiante, pero además lograr que estos
alcancen el dominio cognitivo de las destrezas según el grado en el cual están ubicados. Otras expresiones de M6 resaltan ese pacto. Considera ella, que su participación en MSP provee oportunidades a sus estudiantes y lamenta que otros compañeros de su escuela no se den esa oportunidad porque “están privando a sus estudiantes de otras posibilidades, de dar la clase con otras herramientas”. La manifestación de la maestra M2, “este año yo tuve que darle ecuaciones lineales y me tranqué un poquito, cómo yo puedo bajar de nivel para que él pueda entender lo que es la ecuación lineal” demuestra ese pacto en su preocupación y su interés por descubrir nuevas formas para trabajar con el estudiante que tiene dificultades para el aprendizaje. Esta maestra además, se toma su tiempo para atender el aprendizaje previo cuando el diagnóstico le deja ver que el estudiante no domina el tema programado para enseñarse. Aspecto que se evidencia en la siguiente manifestación:

Como maestra me encuentro con esas lagunas de mis estudiantes. …Y cuando vas a dar la clase al nivel que te corresponde, alineado con los estándares del Departamento te das cuenta que no salen adelante porque no tiene la base,…y la realidad es que mis estudiantes llegan no preparados para ese tema. Así que tengo que coger un tiempo para tratar de encajarlos con los conceptos con unas destrezas que necesitan para poder hacer otros ejercicios matemáticos (M2-E).

Ese pacto de M2 se acentúa cuando está dispuesta a utilizar de sus recursos económicos para mejorar las prácticas en su sala de clases como lo confirma el comentario: “Yo quisiera comprar muchas cosas, pero mi bolsillo no me lo permite, uno tiene una familia, una responsabilidad, y todo no lo puedo gastar en el salón”.

En un momento dado la maestra M6 tuvo que ausentarse a un taller por una situación personal, pero ella no quería perderse la clase de medición que iban a ofrecer ese día. Así que se
las ingenio y le pidió a unas compañeras que se la grabaran. De esta forma ella rompió una barrera que se interponían entre una necesidad inmediata personal y una profesional. Acciones como estas, se clasifican en este estudio como aquellas que rompen barreras para lograr el objetivo del aprendizaje del maestro o del estudiante. Esta fue una de las características que proyectaron alguno de los participantes y que constituyen parte de la categoría imagen del maestro. Por otra parte, la maestra M2 no se escuda en la queja de que no tiene equipo cuando se necesita integrar la tecnología para que sus estudiantes aprendan. Ella comentó: “tengo que buscar mi computadora, el i pad que yo me la llevo [de su casa al salón de clases]” para evidenciar que lleva y utiliza propiedad personal al salón para lograr el aprendizaje de sus estudiantes. En la tabla 13 se resume la evidencia de la categoría imagen del maestro.

Desarrollar confianza. Afrontar el reto de participar en el programa MSP aportó al desarrollo de la confianza como profesional de la enseñanza. La mayoría de estos maestros aceptaron que les faltaba dominio para enseñar matemáticas. Aceptaron el reto, pero estaban inseguros de poder realizar un trabajo bien hecho. Esa inseguridad es uno de los precipitantes para solicitar al programa MSP. Las expresiones de estas maestras demuestran que se ha dado un cambio de perspectiva. Según el diálogo establecido con M3, ahora no le tiene miedo a la medición, porque ya no le da tanta dificultad. La dificultad de M4 era con la geometría, pero sus expresiones sostienen el cambio de perspectiva en favor a su aumento de confianza para enseñar dicho tema. Sus palabras parecen ser sinceras cuando acepta que MSP ha cerrado la brecha de su inseguridad como profesional de la enseñanza cuando expresa: “Entré desde cero, sabes, entré con muchas dudas, muchas inseguridades, inquietudes, y a través de los 3 años que he estado en MSP, ahora me siento más segura”.
Tabla 13

Evidencias que sustentan la categoría imagen del maestro

<table>
<thead>
<tr>
<th>Categorías Imagen del maestro</th>
<th>Percibido en las respuestas durante las entrevistas</th>
</tr>
</thead>
</table>
| Acepta sus limitaciones | Manifestaciones de dificultad con el dominio de conocimiento del contenido de matemáticas (M1-E, M2-E, M3-E, M4-E, M6-E)
| | Manifestaciones de necesidad de continuo reforzamiento de lo aprendido (M5-E). |
| | Demostró tener iniciativa propia en la búsqueda de oportunidades de desarrollo profesional (M4-E). |
| | Participan de otros talleres diferentes a MSP y colaboran con otros al divulgar de los nuevos conocimientos (M1-E, M2-E). |
| | Valorar el conocimiento de contenido de otras áreas (M4-E, M6-E) |
| | En su participación por más de 5 años siempre aprende algo nuevo o refuerza lo aprendido (M5-E). |
| Receptivo a nuevos aprendizajes | Maestra que debe ausentarse y envía a grabar el taller para no perderse el conocimiento (M6-E) |
| | Lleva y utiliza propiedad personal para enseñar a sus estudiantes (M2-E) |
| Rompe barreras | Acepta nuevos retos (M1-E) |
| | Aunque hay trabajo adicional, en su casa y sus días libres pero el participar de MSP es más significativo (M2-E, M3-E) |
| | La participación es más allá que asistir, es demostrar que se ha extendido el conocimiento o se persigue un nuevo grado académico (M5-E) |
| Disposición | El aprendizaje del maestro para transferir lo aprendido para el aprendizaje de los estudiantes (M1-E) |
| | Diferenciar la enseñanza considerando la aptitud (M2-E) |
| Pacto con el aprendizaje del estudiante | Atención al aprendizaje previo (M2-E). |
| | La motivación para participar de MSP es lograr que sus estudiantes aprendan (M3-E) |
| | Utilizan de sus propios recursos económicos para adquirir materiales para la enseñanza (M2-E) |
| | Estar bien preparada para proceso de evaluación alterna (M6-E) |

De la misma forma, la maestra M6 ha desarrollado confianza para enseñar matemáticas.

Ella comentó su temor a las matemáticas. Sin embargo, MSP le ha provisto materiales que le ayudan a enseñar y a mitigar la inseguridad. El sentimiento de sentirse más segura y más preparada es algo bueno para ella, pero lo es más para sus estudiantes.
Respaldo al maestro. Ese respaldo tiene una dimensión afectiva en la medida en que hay respeto hacia el maestro, hay buen trato del personal de MSP y se dan oportunidades de que se escuche su voz para hacer sugerencias sobre aspectos del programa. La maestra M1 expresó que el programa cambió la secuencia de los temas en los talleres a petición de los maestros, de tal modo que los temas de los mapas curriculares se cubrieran antes de que los maestros trabajaran en su salón, para así ellos adquirir las herramientas de cómo lo van a enseñar. La expresión de M1, “ellos no le tenían así,… Nosotros se lo consultamos y ellos hicieron unos cambios” (M1-E) lo confirma. Al igual lo confirma la siguiente expresión: “El trato es personal, uno se siente bien aquí. Desde que tú llegas estos caballeros te tratan como reina. Siempre te escuchan, siempre si tenemos una inquietud, si tienes una situación ellos están ahí para ti” (M3-E).

El personal respalda, apoya y ayuda al participante en la dimensión intelectual. Lo confirman las siguientes expresiones:

“No es intimidando, no es, simplemente es un par más [el personal, se refiere al coach] donde él te puede guiar (M3-E)

“Si yo me tranco en la metodología… en las gráficas, si yo me tranco en el estudio de datos, pues es darme luz de guíarme [el personal, el coach] en cómo es que yo hago la investigación” (M2-E).

“Una de las cosas que siempre me ha gustado de este programa que tanto el profesorado [el personal] como los compañeros nos ayudamos. Yo no lo he visto en otros programas” (M4-E).

“Bueno entre los elementos, está el componente humano….esa aceptación que nos tenemos. Los que dirigen el proyecto [el personal] ese estímulo constante de que ellos se
esfuerzan porque tengamos las herramientas que necesitamos para completar [grados de maestría]” (M5-E).

Quehacer educativo. La razón de ser de MSP es mejorar las prácticas de enseñanza de los maestros en beneficio del aprendizaje del estudiante. Los elementos del contexto de MSP actúan en alianza con los de la persona para gestionar cambios en las prácticas de enseñanza de los maestros. Estos cambios se van desarrollando gradualmente trazando una ruta hacia una nueva identidad profesional. Casi todas las maestras hicieron expresiones que favorecieron las prácticas de enseñanza a consecuencia de su participación en el programa. La expresión de la maestra M3 “Todo lo que he aprendido aquí lo he aplicado en la sala de clases y ha sido satisfactorio para mis estudiantes” refleja que el beneficio ha sido para ella y sus estudiantes. Ella informó además que se integra con los maestros de la sala regular y ambos aplican los nuevos conocimientos con los estudiantes que tienen en conjunto, se benefician tanto los de la corriente regular como los de educación especial. Al igual que los maestros antes mencionados, M4 informó que los manipulativos que se crean en los talleres se utilizan en la sala de clases. Ella dijo: “Esto me ha ayudado a facilitar la enseñanza en mis estudiantes porque eso mismo yo lo hago”. La expresión de M6 “lo que yo obtengo aquí yo lo utilizo en el salón de clases, se me hace mucho más fácil el trabajo” deja claro que los nuevos aprendizajes facilitan el trabajo de enseñanza del maestro.

Entornos de enseñanza para el aprendizaje auténtico. Los entornos de enseñanza para el aprendizaje auténtico que crea el maestro que participó en MSP son el foco del quehacer educativo. El maestro ha fortalecido estos entornos en la aplicación de situaciones del diario vivir, a través del uso de manipulativos, de explicaciones variadas para desarrollar los conceptos, de actividades lúdicas, de la integración de la tecnología y de estrategias para la diferenciación.
Los hallazgos de las entrevistas, los datos obtenidos de la Respuesta Escrita Inmediata y de las Notas de Reflexión aportaron a la descripción e interpretación de los entornos.

Los comentarios de algunos maestros proveen información acerca de la transferencia de los conocimientos adquiridos en el taller a la sala de clase. Los mismos se transfieren básicamente de la misma forma en que fueron aprendidos. En los talleres los maestros utilizaron, diseñaron y aprendieron a usar manipulativos para explicar los conceptos. La maestra M1 respondió que implanta las estrategias casi de la misma forma en que las aprendió pero con otro material u otra destreza (M1-E). Ella al igual que M3 expresa que utiliza los “foldables” y que le han favorecido el proceso enseñanza y aprendizaje. Añadió además que utiliza en su salón (mostró una foto) bloquecitos recibidos en MSP para enseñar ecuaciones y que el uso de los mismos ha fortalecido el aprendizaje de este tema. El concepto valor de la variable la maestra M1 se desarrolló usando balanzas. La maestra M2 informó que utilizó un plano cartesiano diseñado en los talleres para trabajar con coordenadas e identificar puntos en el plano. La maestra M3 informó que en los talleres aprendió a hacer materiales a bajo costo. Su expresión: “Sabes que con cualquier cosita hemos sacado materiales, cosas que a los nenes les gustan” evidencia el enriquecimiento de los entornos para el involucramiento de los estudiantes y por ende lograr una mayor participación de estos. La maestra M5 informó que utilizó cometas para enseñar destrezas de triángulos y ángulos en la clase de geometría.

Los aprendizajes sobre actividades lúdicas se transfirieron a la sala de clases. La maestra M2 comunicó que integró el concepto de Steam en las actividades de aprendizaje. Además mencionó otros juegos, tales como la peregrina, jugar a pescar, el juego de “memory” los cuales fueron utilizados para enseñar conceptos. Los juegos han hecho que las clases sean más interesantes para los estudiantes según lo expresó M5.
En la etapa de aplicación de los talleres se diseñan planes que los maestros implantan en sus clases. Esto fue mencionado por la maestra M6. Según M2, siempre se reflexiona sobre la forma en que el plan se implantó, en actividad subsiguiente de capacitación profesional.

En los entornos de enseñanza para el aprendizaje se discuten problemas verbales de situaciones del diario vivir. Se observó que se integran recetas para trabajar fracciones (M2-E). El concepto de función la maestra M2 lo enseñó usando una licuadora para explicar el concepto de entrada y salida. Añade esta maestra que estas actividades le dan experiencias significativas al estudiante. El concepto de plano cartesiano la maestra M2 lo enseñó dibujando las partes del salón, donde se identificaban las coordenadas y luego se colocaban dibujos de las ventanas, las puertas y la pizarra. La maestra M4 explicó que luego que enseña el concepto, en la aplicación utiliza problemas verbales y situaciones del diario vivir. Recalcó que “hay que darles problemas verbales en la cual el estudiante se enfrenta día a día con la realidad de la sociedad”. La maestra M6 utiliza actividades donde se preparan alimentos para integrar las unidades de medición. Le da pertinencia al contenido de matemáticas y el estudiante puede entender el valor de las matemáticas para su vida.

El conocimiento especializado del contenido que ha desarrollado el maestro se enseña tomando en cuenta su significado y aplicación en situaciones de vida real. Al respecto M3 dijo, “que tú vas a aprender a hacer un huerto casero, lo puedes hacer con tus estudiantes, lo puedes aplicar en matemáticas”. Lo sustenta la maestra M5 en su expresión “Bueno estamos tratando de irnos a experiencias de la vida real donde los estudiantes puedan de alguna forma, este, integrar lo que se está dando con los conocimientos con su vida rutinaria”. La maestra M6 recalcó, “Yo todo lo utilizo, todo lo que yo puedo lo utilice, del diario vivir y de manera concreta”. Por último, lo evidencia la maestra M4, cuando dijo:
En las situaciones que les doy, cotidianas porque eso es otra cosa que hay que enfrentar al estudiante, que las situaciones, hay que darle problemas verbales en la cual el estudiante se enfrenta día a día con la realidad de la sociedad (M4-E).

La maestra M2 comentó que en sus clases los estudiantes tienen la oportunidad de hacer representaciones con dibujos o visuales para representar conceptos. Esta maestra explicó que a través de dibujos los estudiantes desarrollaron el concepto de fracción (M2-REI y M2-NR)

Las prácticas de enseñanza de los maestros reflejan el uso de actividades de assessment para ir formando el aprendizaje. Se identificaron tanto en las entrevistas como en las notas de reflexión y la técnica Respuesta Escrita Inmediata, actividades de assessment más allá de las pruebas. La maestra M2 integra el diario reflexivo como técnica de assessment que desarrolla la creatividad del estudiante, integra diferentes destrezas y provee información sobre la efectividad de sus prácticas de enseñanza. En el siguiente comentario se aprecian la diversidad de áreas que la maestra integra a través de la preparación de un diario reflexivo:

Yo hago un diario reflexivo que ellos mismos crean, la idea la aprendí aquí. Ellos mismos crean un libro, le hacen la carátula y todos los días ellos ahí van a escribir sobre lo que yo enseñé, ellos pueden dibujar, o lo van a explicar o van a hacer un cuento. Al final del día ellos van a explicarme ahí, lo mismo que yo le enseñé pero en sus palabras. Ahí yo sé si ellos lo entendieron, si tienen dudas, o no entendieron un divino. Porque no van a saber expresarlo en sus propias palabras, porque no pueden construir nada. Así que...por lo menos dos veces en la semana, ellos tiene que escribir en ese diario un cuentito, un poema, una canción, algo, y ahí yo mido, esto vale nota (M2-E).

La maestra M3 respondió que utiliza el mapa de conceptos, la tirilla cómica, y el diagrama de Venn, entre otros, como técnica de assessment.
Reflexión para el mejoramiento de la enseñanza. Los maestros reciben orientación sobre la investigación en acción. En dichas orientaciones se discuten temas tales como la identificación de un problema, diseños de investigación, análisis de datos y resultados de una investigación. A través de este componente los maestros tienen la oportunidad de reflexionar sobre las prácticas de enseñanza y probar estrategias diferentes para atacar los problemas de aprendizaje que identifican en su sala de clases. En las propuestas que preparan e implantan los maestros tienen que identificar el estándar y la expectativa asociada a su investigación, el concepto a enseñar, los objetivos, materiales, las actividades de assessment y las inteligencias múltiples a ser utilizadas (Documento de propuestas de investigación). Se da un proceso de reflexión global e integrador. El proceso integrador que requiere la investigación en acción estimula el conocimiento acerca del desarrollo del currículo, acerca de estrategias para desarrollar el concepto, y el assessment apropiado para la formación del aprendizaje del estudiante. Cuando el maestro entrega a MSP la propuesta con sus resultados tiene un espacio para reflexionar sobre el proceso. Dichas reflexiones son ejemplo del impacto de MSP en el conocimiento y el mejoramiento de las prácticas de enseñanza de los participantes. Algunas reflexiones de otros maestros participantes en MSP identificadas en el documento de propuestas, que al igual que los participantes en la muestra de este estudio, han manifestado que han ganado nuevo aprendizaje se enumeran en la tabla 14. Hay que lograr que la reflexión para el mejoramiento se convierta en una tarea constante del educador. En la medida en que los maestros internalicen y hagan de la investigación en acción un proceso de reflexión continuo se crearán oportunidades reales de atacar los problemas de aprovechamiento de los estudiantes.
Tabla 14

Reflexiones en el documento Propuestas de investigación en acción que evidencian que otros participantes de MSP han ganado nuevo aprendizaje

<table>
<thead>
<tr>
<th>Documento</th>
<th>Reflexiones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propuestas de investigación en acción de MSP</td>
<td>“El maestro siempre debe ser innovador en la sala de clases y es de gran motivación para el estudiante”</td>
</tr>
<tr>
<td></td>
<td>“El trabajo investigativo que estoy llevando a cabo me ayudará a integrar diferentes actividades y tener un marco de referencia más amplio para mis estudiantes y mejorar el aprovechamiento académico”</td>
</tr>
<tr>
<td></td>
<td>“Al preparar las actividades del proyecto y luego de evaluarlas logré las expectativas presentadas e los objetivos propuestos y en el uso de los materiales para ser utilizados en la sala de clases”</td>
</tr>
<tr>
<td></td>
<td>“A pesar de que el trabajo que tuve que realizar fue sumamente arduo… no cabe duda de que me permitió ampliar mis conocimientos en muchos aspectos. El trabajo de redacción, búsqueda de información y presentación del mismo representó un verdadero reto”</td>
</tr>
<tr>
<td></td>
<td>“Les confieso que yo quería renunciar y no volver, pero gracias a mis profesores y compañeros no lo hice, pues he podido utilizar mis conocimientos aprendidos aquí en la sala de clases”</td>
</tr>
<tr>
<td></td>
<td>“Este taller ha sido de experiencias positivas académicamente y crecimiento”.</td>
</tr>
<tr>
<td></td>
<td>“La sociedad está cambiando a pasos agigantados y la escuela necesariamente también deberá hacerlo. Implementar trabajos digitalizados en la práctica de ejercicios de matemática, despertar el interés en nuestros estudiantes e impulsar al estudiante en el análisis individual de resolución de problemas”.</td>
</tr>
<tr>
<td></td>
<td>“Dios bendiga a todos los que laboran para que nosotros los maestros nos sigamos llenando de nuevos conocimientos y así actualizarnos con el mundo que nos rodea”</td>
</tr>
</tbody>
</table>

Involucramiento del estudiante. A través del análisis de los datos se han identificado además, elementos de la gestión del maestro en su quehacer diario que de alguna manera han intercedido en el mejoramiento académico del estudiante. En la investigación no se identificaron datos concretos cuantitativos que evidenciaran el mejoramiento del aprovechamiento académico de los estudiantes. El único hallazgo relacionado con el assessment del aprovechamiento académico fueron los comentarios de las maestras M2 y M6 que informaron que la mayoría de los estudiantes que tomaron las pruebas alternas dominaron las destrezas. Sin embargo, a través de las entrevistas con los maestros sí se pudo interpretar que el mejoramiento de los entornos de enseñanza ha provocado un mayor interés de los estudiantes en participar activamente del proceso enseñanza y aprendizaje.

A través de las manifestaciones de las participantes la investigadora entiende que estas atribuyen que la utilización de juegos, manipulativos, actividades en el patio y las oportunidades de crear que los maestros están llevando a sus salones han logrado una actitud receptiva a la enseñanza de las matemáticas. Según la maestra M2, el programa MSP le ayudó a desarrollar ideas que han inducido una actitud positiva hacia el aprendizaje de las matemáticas. Añade que los estudiantes no quieren irse de su salón porque disfrutan las actividades, comentario que sostiene que los estudiantes aumentaron el interés y se han involucrado en las tareas de enseñanza.

La maestra M1 expresó que los estudiantes a los que ella le dio clases el año pasado y que los recibió nuevamente este año, están mejor preparados académicamente que aquellos a los que ella no le dio clases. Significa entonces, que los estudiantes son receptivos al estilo de enseñanza de la maestra. El programa ha fortalecido unos estilos de enseñanza que atraen la atención del estudiante. El comentario de M4 sostiene que los estudiantes aprenden más rápido, gracias a la
diversidad de materiales que integra en sus clases, comentario que igualmente valida la receptividad al estilo de enseñanza del maestro.

La esencia de lo que constituye la evolución del maestro se resume en la figura 8. En la misma se identifican los elementos que definen el contexto, la persona y el quehacer educativo. Las flechas indican la relación en que se da la interacción de los tres componentes. La dimensión de vinculado refleja que tanto el contexto como el quehacer educativo aportan para el beneficio mutuo.

Figura 8. Dimensiones de la Evolución del maestro que participó en MSP
Panorama global de los hallazgos

En esta investigación se utilizó el diseño cualitativo de estudio de caso para explorar las experiencias de seis maestras que enseñan matemáticas en los grados de cuarto al sexto, luego de haber participado de un programa de desarrollo profesional. La iniciativa que se investigó fue una alianza del programa Mathematics and Science Partnership entre el DEPR y una institución de educación superior. En el capítulo cuatro se discutieron las categorías que surgieron del análisis de los datos recopilados a través de la entrevista semiestructurada, las notas de reflexión, la respuesta escrita inmediata y el cotejo de documentos. De ese análisis surgen tres categorías: (a) contexto de MSP, (b) persona y (c) quehacer educativo, las cuales interactúan para la evolución del maestro de matemáticas como profesional de la enseñanza.

Durante su experiencia en MSP el contexto aportó a incrementar el conocimiento de contenido de las matemáticas, el pedagógico de las matemáticas, el pedagógico general, el tecnológico y por último el de investigación en acción. Las características de larga duración, vinculado, las visitas de apoyo, los talleres y las conferencias aportaron en forma significativa al aprendizaje del maestro. Además promovió ambientes de aprendizaje donde el maestro tuvo la oportunidad de participar, colaborar y desarrollar destrezas de líder instruccional.

El maestro como persona proyectó una imagen favorecedora al cambio. Dicha imagen en alianza con un desarrollo de confianza que fomentaron los nuevos conocimientos, son muestra del apoderamiento que el maestro ha ganado a consecuencia de la participación en el programa. El respaldo afectivo e intelectual que ofreció el contexto ayudaron a que el maestro se apoderara y fortaleciera su imagen personal y como profesional de la enseñanza.

En el quehacer educativo es donde se evidencia el cambio del maestro. Las prácticas que están desarrollando en los salones son un reflejo de ambientes que promueven la autenticidad del
aprendizaje a través del uso de manipulativos y el desarrollo de problemas y situaciones de los entornos de vida del estudiante. El mejoramiento de los entornos de enseñanza ha provocado que haya mayor involucramiento del estudiante en las actividades de enseñanza y en su aprendizaje.

Los hallazgos antes enumerados dan contestación a las preguntas que se plantearon en la investigación. A continuación se identifican aquellos elementos del contexto, de la persona o del quehacer educativo que aportaron a contestar las preguntas. Las respuestas y análisis de las mismas se nutren de uno o más de los elementos que conforman la categoría de la evolución del maestro.

Experiencias de formación de los participantes

Las respuestas a la primera pregunta (ver pregunta en página 15) describen las experiencias de formación de las participantes en el desarrollo de las actividades del programa MSP. Según reportaron las maestras, sus experiencias en el Programa favorecieron su evolución como profesional de la enseñanza. Dicha evolución se manifestó en los comentarios acerca de cuánto los conocimientos adquiridos habían fortalecido sus prácticas de enseñanza. Las experiencias desarrolladas a través de los diferentes componentes de la estructura de MSP colaboraron hacia la consecución de una mejor definición profesional de los participantes. Las mismas se conglomeran en tres categorías: (a) aumento del conocimiento para la enseñanza de las matemáticas basadas en estándares, (b) adquisición de conocimientos en tecnología y (c) adquisición de conocimientos en investigación. A continuación, se hace una descripción detallada acerca de cómo cada una de estas categorías contribuyeron a la evolución profesional de las participantes.
Conocimiento del contenido para la enseñanza de las matemáticas. Los talleres de contenido, que le dan forma al contexto de MSP, fueron los propulsores de las experiencias para el aumento del conocimiento para la enseñanza de las matemáticas basada en estándares. Los conocimientos de contenido para la enseñanza de las matemáticas se desglosaron en cuatro áreas: (a) conocimiento especializado del contenido de la materia, (b) conocimiento pedagógico de la materia, (c) contenido del currículo y (d) contenido pedagógico general.

Todas las maestras reportaron haber aumentado su conocimiento especializado de contenido para enseñar matemáticas en el grado que enseñan. Los temas desarrollados incluyeron conocimientos de los estándares de numeración, álgebra, medición, geometría y de análisis de datos y probabilidad. Las maestras informaron que los talleres de contenidos le enseñaron a explicar los conceptos de diferentes formas, incluyendo explicaciones en forma concreta, semi concreta y abstracta. Además, en el conocimiento especializado aprendieron a identificar más de un ejemplo que les ayudara a explicar los conceptos (M2-E) y también aprendieron a trabajar el procedimiento de varias maneras (M3-E).

Las experiencias les ayudaron a incrementar el conocimiento pedagógico de la materia. Este es el conocimiento acerca de cómo enseñar el contenido para que el mismo tenga sentido y sea pertinente. Cinco de los maestros mencionaron la palabra manipulativo. Ellos aprendieron a construir manipulativos a “bajo costo”, aspecto que valoran mucho debido a las dificultades que confrontan en sus escuelas para que se le asignen materiales. Esos manipulativos los diseñaban en los talleres, los aprendieron a usar en los talleres y luego los probaban en sus prácticas de enseñanza. Los mismos tuvieron mucha aceptación de los maestros. Dos de los participantes hablaron de la instrucción diferenciada. La maestra M1 aclaró dudas sobre el significado y cómo aplicarlo y la maestra M4 enfatiza la importancia de diagnosticar los estilos de aprendizaje para
diferenciar las actividades de enseñanza. Los problemas verbales y situaciones de vida real fueron integrados en los temas de matemáticas. El contexto de MSP incluía viajes de campo educativos, que favorecieron la inclusión de escenarios reales donde se aplican las matemáticas. Las representaciones, la utilización de visuales y diagramas fueron parte de las actividades de aprendizaje que mencionaron los maestros y tuvieron mucha aceptación porque les ayudaba a que los estudiantes entendieran los conceptos.

La adquisición de conocimientos pedagógico general se dio a través de las actividades lúdicas y la estrategia de integración curricular. Tres de las maestras informaron que aprendieron a integrar el juego a través de su participación en los talleres. En los viajes de campo se integraban los maestros de ciencia y matemáticas, estrategia que facilitó la integración de ciencia con las matemáticas.

En los talleres de contenido al comenzar las actividades de enseñanza para el maestro se identificaba el estándar y la expectativa que correspondía en cada grado. De esta forma el maestro fue adquiriendo conocimiento del currículo, especialmente de su alcance y profundidad por grado. Este conocimiento le permite diferenciar el contenido que tiene que cubrir por grado, los tipos de problemas y nivel de dificultad para que pueda cumplir con el estándar tal y como está establecido en el grado.

Conocimiento tecnológico: Las experiencias promovidas por los talleres de contenido incluyeron conocimiento tecnológico. Las maestras tuvieron la oportunidad de aprender sobre la calculadora TI-Nspire y cómo integrarla para discutir contenidos de los estándares. A través de esta tecnología el maestro aprende a enriquecer y a incluir elementos de la instrucción diferenciada en sus prácticas educativas, proveyendo para atender los intereses del estudiante del siglo 21. Una de las maestras se certificó en educación a distancia. Además aprendieron a
identificar material en la web para integrar en la enseñanza. Una de las ventajas del maestro identificar y evaluar material en la web es que puede atender la diversidad usando materiales auto correctivos que se encuentran en las páginas de Internet.

Conocimiento en investigación. Las maestras adquirieron conocimientos sobre investigación en acción. Las conferencias y visitas de apoyo que forman parte del contexto estructural de MSP, son las que aportan a que los maestros se adueñen de estos conocimientos. Los conocimientos en investigación tiene el propósito de que el maestro redacte e implante una propuesta. Durante este proceso de preparación de la propuesta el maestro va reflexionando sobre el currículo, sus prácticas de enseñanza y las necesidades de los estudiantes. Una vez la implanta los hallazgos le dan información acerca de aquellas estrategias, métodos, o actividades que benefician su sala de clases. Se espera que el maestro se adueñe del conocimiento de investigación en acción, que la reflexión tenga forma de ciclo para que se convierta en un investigador constante en beneficio de las prácticas y de sus estudiantes. El quehacer educativo aporta a la preparación de esa propuesta.

Reflexión para el mejoramiento. Las conferencias dieron oportunidades a las maestras de adquirir destrezas de investigación en acción. El diseño e implantación de la propuesta promovió la reflexión del maestro sobre las prácticas de enseñanza. En la tabla 15 se resumen las categorías asociadas a la primera pregunta de investigación.

Aportación del andamiaje de MSP

La segunda pregunta (ver pregunta en página 16) se estableció para determinar la forma en que el andamiaje de MSP aportaba a la adquisición del contenido matemático en el maestro participante y a la trasmisión en los procesos de enseñanza. Se determinó que la diversidad de la estructura, los vínculos con el quehacer educativo y los ambientes de aprendizaje participativos...
favorecieron el aprendizaje del maestro. El respaldo al maestro que promovieron los recursos y administradores de MSP también aportó en forma significativa a las ganancias en conocimiento y enriquecimiento de los escenarios de enseñanza. Se discuten a continuación estas dimensiones en forma más específica.

Tabla 15

Categorías asociadas a las experiencias de los maestros en MSP

<table>
<thead>
<tr>
<th>Sub categoría</th>
<th>Indicadores</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conocimientos de contenido para la enseñanza de las matemáticas basado en estándares</td>
<td>Contenido especializado de la materia</td>
<td>Se refiere al conocimiento de datos, a diferentes interpretaciones de un concepto, a las conexiones entre tópicos, y a los conceptos subyacentes en los procedimientos. (Ball, Thames y Phelps, 2008)</td>
</tr>
<tr>
<td></td>
<td>Conocimiento Pedagógico del contenido</td>
<td>Representaciones adecuadas para enseñar el concepto (Ball, Thames y Phelps, 2008)</td>
</tr>
<tr>
<td></td>
<td>Conocimiento del currículo</td>
<td>Instrucción diferenciada: Diferentes formas para desarrollar el contenido, proceso y producto partir de las necesidades del estudiante. Situaciones de vida real y manipulativos</td>
</tr>
<tr>
<td></td>
<td>Conocimiento pedagógico general</td>
<td>Se define como aquel que está relacionado con la enseñanza, el aprendiz y el aprendizaje, que se extiende más allá de la materia (Shulman, 1986. Borko y Putnam (1996))</td>
</tr>
<tr>
<td>Conocimiento tecnológico</td>
<td>Destrezas en tecnología</td>
<td>Calculadora TI-Nspire, pizarra electrónica, cursos en la web.</td>
</tr>
<tr>
<td></td>
<td>Integración de la tecnología</td>
<td>Integrar material educativo de la web y la calculadora TI Inspire en las clases.</td>
</tr>
<tr>
<td>Conocimiento en Investigación</td>
<td>Investigación en acción</td>
<td>Conferencias sobre redacción de una propuesta en investigación en acción: definir problema, identificar literatura, metodología, análisis de datos, resultados y técnicas de redacción.</td>
</tr>
<tr>
<td></td>
<td>Investigación cuasi experimental</td>
<td>El diseño de algunas las propuestas de investigación es cuasi experimental con grupo experimental y de tratamiento.</td>
</tr>
<tr>
<td>Reflexión para el mejoramiento</td>
<td>Problema de investigación</td>
<td>Identificar problemas en las prácticas de enseñanza e identificar e implantar estrategias que mejoren las mismas.</td>
</tr>
</tbody>
</table>
Estructura. El contexto de MSP tiene una estructura diversa que aporta a los nuevos conocimientos. Dos elementos que distinguieron al programa MSP y aportaron en forma significativa al aprendizaje del maestro fueron las características de larga duración y participación colectiva. El componente de larga duración a través de todo un año, facilitó la discusión de temas con profundidad, y aportó a que se diera un aprendizaje auténtico a través de la inclusión de las experiencias que el maestro iba desarrollando en sus prácticas educativas a través de todo el año. La larga duración favoreció que se establecieran vínculos entre los aprendizajes de MSP y las prácticas educativas del maestro de la sala de clase, aspecto que influyó en gran manera en el quehacer educativo. De igual forma, la participación colectiva benefició el quehacer educativo porque integró las vivencias en la enseñanza del maestro a los temas de discusión durante los talleres de contenido para beneficio de otros maestros que también enseñan en el mismo nivel.

La estructura o armazón de MSP incluía, talleres de contenido, conferencias, simposios, visitas de apoyo, centro de recursos y residenciales. Los talleres de contenido son los más significativos porque enfocaron tanto en el conocimiento de contenido, en la pedagogía de las matemáticas, conocimiento del currículo y conocimientos pedagógico general. Las conferencias enfatizaron en conocimientos sobre investigación en acción y los simposios en temas sobre estrategias de enseñanza o de interés para el maestro de la sala de clases. Los maestros recibieron asesoría en su propuesta de investigación a través de las visitas de apoyo. A través de los centros de recursos los maestros recibieron materiales para fortalecer la enseñanza de los conceptos. Estos materiales se aprendieron a usar en los talleres y tienen pertinencia con la realidad educativa del maestro en la sala de clases.
Vinculado. La participación colectiva representada por maestros de matemáticas del nivel cuarto al sexto favoreció los vínculos con el quehacer educativo, ya que la integración de vivencias en tiempo real del maestro en su interacción con el contenido y la reflexión sobre estas enriqueció los aprendizajes que fue desarrollando MSP. Los vínculos fueron bien estrechos porque además de integrar temas, necesidades, situaciones del quehacer educativo en tiempo real se ofreció apoyo individualizado. Se atendieron en forma individualizada situaciones o necesidades que enfrentaban los maestros en su interacción con los contenidos.

Ambientes de aprendizaje participativos. El contexto donde se desarrolla MSP se caracteriza por proveer para la participación y colaboración de los participantes. El formato de los talleres promueve la participación activa. Siempre se tiene un espacio para que el maestro haga un plan, diseña o aprenda usar un manipulativo o diseña una actividad donde se aplique lo aprendido. Se proveen oportunidades para trabajar en parejas o grupos de colaboración. Las actividades de campo representadas mayormente por los viajes educativos refuerzan los escenarios de colaboración y participación entre los participantes.

Respaldo al maestro. Las expresiones de los maestros durante las entrevistas reflejaron que los participantes se sintieron respetados, valorados y apreciados por el personal, desde el inicio de las actividades de MSP. El personal muestra preocupación por necesidades profesionales y personales de los participantes. Se ponen a la disposición para ayudarles cuando sea necesario. Los tratan con amabilidad y con respeto. El personal hace cambios tomando en consideración necesidades y peticiones de los participantes, esto es se escucha su voz.

Reclutamiento. El programa MSP ha diseñado una variedad de alternativas para divulgar el proyecto. Entre estas están: (a) anuncios en rotativos del país, (b) divulgación en la página web de la universidad y (c) visitas a las escuelas y distritos. El DEPR también divulga a
través de convocatorias que llegan a las escuelas. Las dos formas de mayor relevancia que lograron reclutar a los participantes fueron por otros compañeros que habían participado y la convocatoria del DEPR. En la tabla 16 se presenta un resumen de las categorías asociadas a la segunda pregunta de investigación.

Apoderamiento del maestro de los nuevos conocimientos

La tercera pregunta se estableció para describir cómo se da el apoderamiento del maestro de los nuevos conocimientos para la enseñanza de las matemáticas al participar del programa de capacitación profesional (ver pregunta en página 16). Las interpretaciones de los hallazgos reflejan que tanto aspectos de la persona como del contexto de MSP interactúan para que se logre el apoderamiento de los nuevos aprendizajes. Se identificaron unas características de la persona que favorecieron la participación, el aprecio por los nuevos conocimientos y el deseo de superación. Las mismas se conglomeraron en la categoría imagen del maestro. Por otro lado, los escenarios participativos contextuales de MSP proveyeron para ir desarrollando liderato, aspecto que se ubicó en la categoría de instancias de transformación. Por último, los nuevos conocimientos sobre el contenido y enseñanza de las matemáticas aportaron a una mayor seguridad como profesional de la enseñanza, aspecto que se ubicó en la categoría confianza.

Imagen del maestro. Los participantes entrevistados compartían en gran medida unas características que estimularon el desarrollo y crearon una ruta hacia la efectividad de MSP. Las mismas componen la categoría imagen del maestro. Esas características forman parte de la dimensión de la persona, que favorece el cambio hacia la evolución del maestro. Estos maestros se enfrentaron al reto de enseñar matemáticas en el nivel de cuarto al sexto. Ellos reconocieron que había una brecha entre el conocimiento de matemáticas que tenían y el que necesitaban para enseñarla en forma correcta. El reconocer que necesitaban aprender más lo hizo buscar nuevos
aprendizajes. Hubo dos elementos que interactuaron directamente, reconocer las limitaciones y receptividad a los nuevos aprendizajes. La disposición hacia el propósito de aumentar su conocimiento de matemáticas para poder interactuar con el currículo adecuadamente es otra característica que proyectan los participantes. Hubo dos maestras que rompieron las barreras que enfrentaron para lograr sus objetivos. Por lo menos en cuatro de los seis participantes, se apreció que más que enseñar porque es su deber, ellos hacen un pacto con el aprendizaje del estudiante, es lo que los guía a través de todo el proceso de su participación en MSP.

Tabla 16

Categorías que sostienen el andamiaje de MSP que favorece la adquisición del conocimiento y transferencia a las prácticas de enseñanza

<table>
<thead>
<tr>
<th>Sub categoría</th>
<th>Indicadores</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estructura</td>
<td>Larga duración</td>
<td>Actividades de capacitación durante un año que promueven el desarrollo profundo del contenido y vínculos con el quehacer educativo (Garet, Porter, Desimone, Birman, y Yoon, 2001).</td>
</tr>
<tr>
<td></td>
<td>Participación colectiva</td>
<td>Los temas de discusión basados en experiencias y reflexiones sobre las prácticas benefician a otros maestros que enseñan en el mismo nivel. (Garet, Porter, Desimone, Birman, y Yoon, 2001).</td>
</tr>
<tr>
<td></td>
<td>Talleres de contenido</td>
<td>Son el núcleo para desarrollar el conocimiento para la enseñanza de las matemáticas y el tecnológico.</td>
</tr>
<tr>
<td></td>
<td>Conferencias</td>
<td>Son el núcleo para desarrollar el conocimiento sobre investigación en acción y desarrollar una propuesta.</td>
</tr>
<tr>
<td></td>
<td>Simposios</td>
<td>Discusión de temas generales o para el pedagógico general</td>
</tr>
<tr>
<td></td>
<td>Visitas de apoyo</td>
<td>Un coach colabora en el diseño de la propuesta de investigación, asesora en la implantación de los nuevos contenidos y evalúa la implantación de los conocimientos desarrollados por MSP.</td>
</tr>
<tr>
<td>Centro de Recursos</td>
<td></td>
<td>Los maestros reciben materiales y equipo para incrustarlos al diseñar la planificación de la enseñanza.</td>
</tr>
<tr>
<td>Residenciales</td>
<td></td>
<td>Desarrollo de talleres, conferencias de motivación y estrategias de enseñanza.</td>
</tr>
</tbody>
</table>

Tabla continúa
Instancias de transformación. Las actividades de capacitación en MSP promovieron el desarrollo de destrezas de liderazgo. En los talleres de contenido y en la actividad de cierre los maestros tuvieron oportunidades para ser maestros de maestros, colaborar juntos en la planificación de actividades, diseñar materiales e implantar proyectos de investigación en acción. Los escenarios de aprendizaje participativos actuaron como propulsores que gradualmente fueron promoviendo la transformación. Todos estos elementos son partes de la dimensión contexto que trabajan en armonía hacia la evolución del maestro. Los mismos forman la categoría instancias de transformación que evidencia el apoderamiento gradual del nuevo aprendizaje de las
participantes. Ese liderazgo instruccional evidencia apoderamiento y tiene el potencial de impactar a toda una comunidad escolar porque ellos pueden ser los precursores de las comunidades de aprendizaje en ruta hacia el desarrollo de la capacidad de la escuela.

Desarrollar confianza. Las expresiones que simbolizaban cambio de perspectiva en cuanto al dominio de contenido antes y luego de participar de MSP se interpretaron como un aumento de confianza. La categoría desarrollar confianza es parte de la dimensión de la persona, pero fomentada principalmente por los talleres de contenido. El desarrollo de confianza como profesional de la enseñanza de matemáticas es reflejo del apoderamiento de los nuevos aprendizajes. En la tabla 17 se presentan las categorías que representan el apoderamiento de los conocimientos de las maestras que participaron en MSP.

Alineación de prácticas de enseñanza y nuevos conocimientos

La cuarta pregunta requería respuestas que evidenciaran la forma en que se alineaban las prácticas de enseñanza de los maestros con los nuevos conocimientos adquiridos en MSP (ver pregunta en página 16). Dicha alineación estuvo representada por el enriquecimiento de las prácticas de enseñanza. La dimensión del quehacer educativo tuvo mayor peso en la contestación a la pregunta, aspecto que se discute a continuación.

Entornos de enseñanza para el aprendizaje auténtico. Los entornos de enseñanza para el aprendizaje auténtico pertenecen a la dimensión del quehacer educativo. Esta categoría resume la alineación entre los conocimientos adquiridos en MSP y las prácticas de enseñanza. Según los datos de entrevistas, de la Respuesta Escrita Inmediata y las notas de reflexión los maestros utilizaron en sus clases manipulativos provistos por el programa o diseñados por ellos mismos. Las actividades lúdicas fueron aplicadas en los entornos de aprendizaje que diseñó el maestro, siendo este un aprendizaje de gran aceptación por los maestros.
Tabla 17

Categorías que sostienen el apoderamiento de los conocimientos de los maestros en MSP

<table>
<thead>
<tr>
<th>Sub categoría</th>
<th>Indicadores</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imagen del maestro</td>
<td>Reconoce sus limitaciones</td>
<td>Limitaciones en el conocimiento de contenido de los niveles cuarto al sexto y el cómo enfrentar la enseñanza de los conceptos que cubren los cinco estándares.</td>
</tr>
<tr>
<td>(Proyección)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disposición</td>
<td></td>
<td>La disposición se da en dos dimensiones: para atenuar un mal (uno de los maestros tiene que reubicarse a ofrecer matemáticas y todos los demás se niegan) y para ejecutar un propósito buscar mejorar como maestra) (Real Academia Española, 2015).</td>
</tr>
<tr>
<td>Rompe barreras</td>
<td></td>
<td>Acciones que lleva a cabo el maestro más allá de las responsabilidades profesionales para alcanzar un objetivo.</td>
</tr>
<tr>
<td>Hace un pacto con el</td>
<td></td>
<td>Se preocupa y busca formas de que el estudiante aprenda. Es el motor que lo mueve a participar de MSP.</td>
</tr>
<tr>
<td>aprendizaje del estudiante</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instancias de</td>
<td>Colaboración entre maestros en los</td>
<td>Facilitar la colaboración con otros, modelar nuevos conocimientos a otros maestros y promover el desempeño de nuevos roles (McGee, Polly y Wang, 2013)</td>
</tr>
<tr>
<td>transformación</td>
<td>talleres. Comunicar, enseñar y</td>
<td></td>
</tr>
<tr>
<td></td>
<td>compartir con maestros en su escuela.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Desempeñar rol como recurso en</td>
<td></td>
</tr>
<tr>
<td></td>
<td>actividad de cierre.</td>
<td></td>
</tr>
<tr>
<td>Desarrollar confianza</td>
<td>Seguridad (en el dominio de</td>
<td>Desarrollar conocimiento para enseñar matemáticas desarrolla sentimientos y emociones de seguridad profesional.</td>
</tr>
<tr>
<td></td>
<td>contenido)</td>
<td></td>
</tr>
</tbody>
</table>

Además, los maestros planificaron y reflexionaron sobre clases donde los estudiantes diseñaron *lapbooks*, hicieron representaciones para explicar un concepto, usaron manipulativos
para desarrollar la etapa concreta de un concepto e integraron actividades lúdicas para hacer del salón de clases un lugar donde el estudiante quiere estar. Las situaciones de vida real y la identificación de elementos en la sala de clases o en el ambiente externo de la escuela fueron elementos de las prácticas educativas que promovieron los maestros para darle autenticidad al aprendizaje de las matemáticas. Esos elementos de autenticidad se observaron en la preparación de recetas para destrezas de medición, en la simulación de una boletería para conocer los números, en la integración de cometas en geometría y dibujando en un plano cartesiano elementos del salón, entre otros.

Las actividades de *assessment* forman parte de los entornos de aprendizaje que promueven el aprendizaje auténtico. Se identificaron las técnicas de *assessment* del diario reflexivo, los organizadores gráficos, el mapa de concepto y la tirilla cómica. El diario reflexivo además de aportar al conocimiento de las matemáticas aportó a la creatividad y a la integración con la redacción. En la tabla 18 se resume la contestación a la pregunta número cuatro.

Tabla 18

Categorías que sostienen las prácticas de enseñanza de los maestros que están alineadas a los conocimientos adquiridos en el programa de desarrollo profesional

<table>
<thead>
<tr>
<th>Sub categorías</th>
<th>Indicadores</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entornos de enseñanza para el aprendizaje auténtico</td>
<td>Situaciones del diario vivir</td>
<td>Las prácticas educativas de los maestros reflejan la forma en que los conocimientos se utilizan en situaciones reales.</td>
</tr>
<tr>
<td></td>
<td>Diferenciación de la enseñanza</td>
<td>La utilización de herramientas y actividades que hacen del salón de clases un lugar pertinente a la realidad del estudiante.</td>
</tr>
<tr>
<td></td>
<td>Manipulativos</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Actividades lúdicas</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assessment</td>
<td></td>
</tr>
</tbody>
</table>
Impacto de la gestión del maestro en el mejoramiento académico del estudiante

El propósito de la pregunta número cinco (ver pregunta en página 16) fue identificar la manera en que esa participación del maestro en MSP había impactado el mejoramiento académico del estudiante. No se evidenció aumento en aprovechamiento académico. Sin embargo, se identificó evidencia que refleja una posible asociación entre el mejoramiento de los escenarios de enseñanza y el mejoramiento del estudiante.

Involucramiento del estudiante. Los maestros percibieron que a consecuencia de los cambios en las prácticas educativas sus estudiantes aumentaron el interés, estuvieron más motivados y hubo mayor receptividad a los estilos de enseñanza del maestro. Los estudiantes participaron más activamente en las actividades de enseñanza. Estos aspectos conforman la categoría involucramiento del estudiante. Dicha categoría pertenece a la dimensión de quehacer educativo. El aumento en conocimiento de los estudiantes que tomaron clases con el maestro participante versus otros maestros que no participaron, las expresiones de aprobación de los padres hacia la labor del maestro y el aprendizaje de sus hijos, y el deseo de participar y permanecer en el salón de los estudiantes durante la enseñanza crearon la percepción en el maestro de que se está dando un cambio favorable en el aprovechamiento académico de los estudiantes. El elemento aumento de interés del estudiante surge porque los maestros han mejorado los entornos de enseñanza con el uso de manipulativos, juegos y la participación activa del estudiante. Esos nuevos conocimientos dan mayor seguridad como profesional de la enseñanza, atraen la atención de los estudiantes y por lo tanto se les hace más fácil aprender. Es por ello que logran atraer en dirección positiva la atención de sus padres. Esto favorece que se aumente la receptividad a los estilos de enseñanza del maestro. En la tabla 19 hay un resumen de la contestación a la pregunta cinco.
<table>
<thead>
<tr>
<th>Sub Categoría</th>
<th>Indicadores</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Involucramiento del estudiante</td>
<td>Aumento del interés</td>
<td>El tipo de práctica en la sala de clases es pertinente a las necesidades de los estudiantes.</td>
</tr>
<tr>
<td></td>
<td>Receptividad a estilos de enseñanza</td>
<td>Las prácticas de los maestros atraen la atención del estudiante. Los padres descubren que sus hijos aprenden con mayor facilidad.</td>
</tr>
</tbody>
</table>

En este capítulo se describieron en forma detallada las evidencias que sustentan las partes constitutivas del contexto, la persona y el quehacer educativo para la evolución del maestro como profesional de la enseñanza. En el próximo capítulo se presentará un análisis más integrado de estas categorías. Los hallazgos relacionados a cada una de las dimensiones se interpretarán a la luz de la literatura sobre los programas de desarrollo profesional y la enseñanza de las matemáticas. En la discusión e interpretación se hará énfasis en las implicaciones que los hallazgos tienen para el diseño de los programas de desarrollo profesional, las futuras investigaciones y el DEPR.
CAPÍTULO V
DISCUSIÓN DE LOS HALLAZGOS, IMPLICACIONES Y RECOMENDACIONES

Esta investigación examinó las experiencias de seis maestras que enseñan en el nivel de cuarto al sexto grado durante su participación en una iniciativa de desarrollo profesional del programa Mathematics and Science Partnership (MSP). Dicha iniciativa crea una alianza de desarrollo profesional entre el Departamento de Educación de Puerto Rico (DEPR) y una institución de educación superior. El propósito de la investigación fue explorar cómo la participación del maestro en el desarrollo profesional aportaba al conocimiento para la enseñanza de las matemáticas. El diseño cualitativo de estudio de caso se utilizó para investigar en forma profunda el andamiaje del programa de desarrollo profesional y su aportación al aumento del conocimiento de las maestras participantes. Se espera generar información que ayude a entender las características y componentes de programas de desarrollo profesional que fomentan el mejoramiento de las prácticas educativas de los maestros que enseñan matemáticas en el nivel de cuarto al sexto grado. Las estrategias de entrevistas semiestructuradas, la técnica de respuesta escrita inmediata, notas de reflexión y cotejo de documentos se utilizaron para la recopilación de los datos. El diseño de la investigación se hizo para contestar las siguientes preguntas:

1. ¿Cómo describe un grupo de maestros sus experiencias de formación al participar de un programa de capacitación profesional?

2. ¿Cómo el andamiaje del programa MSP provee para la adquisición del contenido matemático en el maestro participante y para la transmisión de los procesos de enseñanza?

3. ¿Cómo el maestro demuestra que se apodera de los nuevos conocimientos para la enseñanza de las matemáticas al participar del programa de capacitación profesional?
4. ¿En qué forma las prácticas de enseñanza de los maestros están alineadas en los conocimientos adquiridos en el programa de desarrollo profesional?

5. ¿Cómo la gestión del maestro ha impactado el mejoramiento académico del estudiante?

En el capítulo cuatro se presentaron y discutieron las categorías del contexto del programa de desarrollo profesional, de la persona y el quehacer educativo que dieron respuestas a las preguntas de investigación. Los hallazgos sugieren que el desarrollo profesional MSP aportó a la evolución del maestro participante en ruta hacia la transformación de sus prácticas educativas. Los elementos del contexto de MSP, del maestro como persona y de las prácticas de enseñanza interactuaron para darle forma a la evolución. Las mismas se identificaron en la investigación como las dimensiones de contexto, persona y el quehacer educativo.

El propósito de este capítulo es hacer una interpretación de los hallazgos a la luz de la literatura disponible sobre los programas de desarrollo profesional y la enseñanza de las matemáticas. En la organización del capítulo, primero se presenta una descripción general de los hallazgos que surgieron del análisis de los datos. Dicha descripción representa la esencia de la capacitación profesional que vivieron las seis maestras que participaron del estudio. Luego, se discuten las aportaciones del contexto, la persona y el quehacer educativo a las preguntas de investigación. Se enfoca en cómo las tres dimensiones describen la experiencia del maestro en ruta hacia el mejoramiento de las prácticas de enseñanza, y en la reflexión acerca del significado de la evolución del maestro para la formación de una nueva identidad profesional. En la próxima sección se discuten las implicaciones para los programas de desarrollo profesional, para el DEPR y para las futuras investigaciones. Se finaliza con recomendaciones para los diseñadores de
programas de desarrollo profesional, futuras investigaciones sobre el tema, los directores de escuelas y el DEPR.

La esencia de la capacitación profesional de la iniciativa MSP

El desarrollo profesional es la herramienta por excelencia que utilizan los sistemas educativos para mantener a los maestros informados en los nuevos conocimientos que necesitan para fortalecer las prácticas educativas y el aprendizaje de los estudiantes. Los educadores han tenido mucho interés en examinar los elementos asociados al cambio del maestro que poseen estos programas. Por tal razón, promueven investigaciones que identifiquen las características de efectividad que los definen. Los hallazgos de las investigaciones han establecido que los mismos se distinguen por ser de larga duración y sostenidos. Además, el foco es el conocimiento de contenido de la materia, promueven el aprendizaje activo, son coherentes con la realidad que vive el maestro y promueven la participación colectiva. Estas características tienen el potencial para mejorar las prácticas educativas y el aprendizaje de los estudiantes.

El DEPR, en alianza con instituciones de educación superior desarrolla el programa de capacitación MSP para apoderar a los maestros de matemáticas y ciencias de cuarto al noveno grado con las herramientas pedagógicas necesarias para enfrentar los retos de la enseñanza de la reforma de los estándares. En esta investigación se utilizó el diseño cualitativo de estudio de caso para explorar y describir las experiencias de un grupo de maestros que enseñan matemáticas en el nivel de cuarto al sexto grado, luego de haber participado de una de las iniciativas de desarrollo profesional de MSP. Los hallazgos de la investigación reflejaron que este programa comparte todas las características de efectividad que se han identificado en la literatura.

En el análisis de los datos recolectados a través de la entrevista, la técnica de respuesta escrita inmediata, las notas de reflexión y el cotejo de documentos se determinó que elementos
del contexto de MSP y del maestro como persona interactuaron para promover nuevas prácticas del quehacer educativo. La interacción del contexto, la persona y el quehacer educativo favorecieron la evolución del maestro hacia la formación de una nueva identidad profesional. La implantación de los nuevos conocimientos en las prácticas educativas evidenció que se estableció una ruta hacia el cambio.

El foco del contexto fue el desarrollo del conocimiento para la enseñanza de las matemáticas, conocimientos tecnológicos y de investigación en acción. Todos aportaron al mejoramiento de las prácticas de la enseñanza. Los conocimientos de la materia correspondieron a los contenidos de los cinco estándares del currículo de matemáticas que cubren las áreas de numeración y operación, geometría, álgebra, medición y análisis de datos y probabilidad. Los conocimientos para la enseñanza de las matemáticas incluyeron además, los de pedagogía del contenido de matemáticas. Los mismos enfatizaron en la integración de manipulativos, las representaciones, los problemas verbales y las situaciones de vida real para desarrollar los conceptos. Conocimientos de instrucción diferenciada aportaron a la construcción de materiales y actividades para atender la diversidad de estudiantes en la sala de clases. Los conocimientos de pedagogía general estuvieron basados en el diseño de actividades lúdicas para promover ambientes de aprendizajes que despertaran el interés y el involucramiento de los estudiantes.

Los conocimientos de tecnología y de investigación aportaron a la efectividad del contexto. Las maestras aprendieron a utilizar equipo tecnológico y a identificar información valiosa en la web para integrar en los temas, fortalecer los contenidos y atender los estilos y perfiles de aprendizajes de los estudiantes. Los conocimientos de investigación permitieron la reflexión sobre las necesidades de la práctica y la implantación de estrategias para atenderlas.
El maestro que participó en esta investigación proyectó una imagen que favoreció el cambio. Se identificaron cinco dimensiones de esa imagen: (a) aceptan sus limitaciones de conocimiento, (b) son receptivos a nuevos aprendizajes, (c) tienen alta disposición, (d) hacen un pacto con el aprendizaje del estudiante y (e) rompen las barreras que se interponen en el logro de sus metas. Esa imagen, en unión a los nuevos aprendizajes, fomentó una mayor confianza en su desempeño como maestro. El respaldo afectivo e intelectual que proveyó el contexto le ayudó a permanecer en el programa, terminarlo y tratar la ruta hacia una nueva identidad profesional.

Los conocimientos fomentaron escenarios de enseñanza para el aprendizaje auténtico donde el maestro implantaba los aprendizajes usando manipulativos, representaciones, resolviendo problemas e integrando escenarios reales del entorno del estudiante. Los conocimientos de investigación en acción aportaron a la reflexión sobre la práctica y los resultados del aprendizaje del estudiante. Las oportunidades de aprendizaje en MSP de las maestras lograron aumentar el interés y la participación de los estudiantes en las actividades de enseñanza. La dimensión del quehacer educativo se nutrió por el cambio que promovieron los escenarios de enseñanza, la reflexión y el involucramiento de los estudiantes.

Todos los elementos que configuraron el contexto, la persona y el quehacer trazaron la ruta hacia la evolución del maestro. El programa MSP comenzó la construcción del proceso de cambio hacia una nueva identidad profesional. Las maestras están iniciando una transformación profesional impulsada por su participación en el programa de desarrollo profesional MSP.

Aportación del contexto MSP en la evolución del maestro

En el año 2007 el DEPR adoptó los estándares y expectativas de grado y materia para reformar las prácticas de enseñanzas y el aprendizaje de todos los estudiantes. Los cambios que trajo el currículo basado en estándares requerían una instrucción rigurosa que respondiera a las
necesidades de todos los estudiantes. El documento que Principles and Standards for School Mathematics que lanzó la NTCM para el año 2000 fue precursor de los cambios hacia la reforma de los estándares del programa de matemáticas. Los mismos delineaban seis principios de los programas escolares de matemáticas de alta calidad. Estos principios constituyen una guía para los educadores para el continuo mejoramiento de la enseñanza y el aprendizaje de las matemáticas. El movimiento de la reforma de los estándares trajo un cambio drástico en el enfoque de la enseñanza de las matemáticas. Los salones se tienen que convertir en comunidades de aprendizaje donde predomine el razonamiento, la conjetura, la resolución de problemas y la autenticidad del aprendizaje. Según el principio de equidad de los Principles and Standards for School Mathematics (NCTM, 2000), hay que proveer oportunidades para que todos los estudiantes aprendan, porque no importa cuáles sean sus condiciones, pueden aprender matemáticas si tienen acceso a una educación de calidad. El desarrollo profesional fue la respuesta inmediata para apoderar a los educadores con las herramientas necesarias para enfrentar los cambios que requería esta nueva visión de la enseñanza.

El énfasis del DEPR en el desarrollo profesional es a consecuencia de reconocer que la educación es un campo profesional dinámico en continuo movimiento. Por tal razón, los mismos se han convertido en la fuente de adquisición de los nuevos conocimiento y destrezas que el maestro requiere para enfrentar la sala de clases día a día. Más aún, es la herramienta fundamental para el desarrollo del maestro del nivel elemental, cuya preparación es general en educación. Las iniciativas MSP forman parte de los modelos de desarrollo profesional que provee el DEPR para mejorar los conocimientos y enseñanza de los maestros de matemáticas de los grados de cuarto al sexto. El maestro que enseña en este nivel, aunque tiene una preparación académica en educación no está preparado para afrontar los retos de la enseñanza de matemáticas
en dicho nivel educativo (Walker, 2007; Orril, 2006). Esta fue una de las razones por las cuales las maestras que participaron en esta investigación, en forma voluntaria decidieron capacitarse en el programa MSP.

Los hallazgos de esta investigación sugieren que el desarrollo profesional del maestro de nivel cuarto al sexto grado en matemáticas es necesario para desarrollar las demandas en conocimientos que requiere la implantación del currículo basado en estándares. Estos estándares a consecuencia del Plan de flexibilidad en el año 2014, se establecieron con una mayor rigurosidad que los del 2007 en las materias de español y matemáticas (Departamento de Educación de Puerto Rico, 2015a). Este programa está creando oportunidades para que los maestros puedan desarrollar los conocimientos para enfrentar los retos que requiere la enseñanza en ese nivel.

Los hallazgos parecen demostrar que hay un consenso entre los participantes en cuanto a la efectividad de MSP en proveerle herramientas para enfrentar los desafíos de aprendizaje de los estándares y expectativas de matemáticas. Las participantes parecieron estar bien satisfechas con su participación en el programa. Las manifestaciones de estas evidenciaron que están implantando los nuevos conocimientos. Los componentes del contexto del programa MSP fueron principalmente los propulsores del aprendizaje de las maestras para fortalecer las prácticas educativas en la dirección que proponen los estándares y expectativas, ejes que sostienen la reforma.

El contexto de MSP es el elemento principal que intervinó para que se estuviera desarrollando la evolución del maestro en ruta hacia una transformación de sus prácticas de enseñanza. A través de una variada estructura del contexto se fomentó en gran medida el aprendizaje de las maestras. Los indicadores que definen ese contexto están en armonía con
otros hallazgos identificados en la literatura sobre programas de desarrollo profesional efectivo.

Las investigaciones de Desimone (2011) sobre el tema identificaron cinco características fundamentales que debe poseer todo programa de desarrollo profesional efectivo, y que formaron parte del contexto de MSP. Según Desimone (2011), las características están asociadas con cambios en conocimiento y en las prácticas de enseñanza del maestro y aunque en menor grado, con el aprendizaje del estudiante. Las mismas son: (a) el contenido de la materia y cómo se aprende dicho contenido conforman el foco de la capacitación, (b) se fomentan oportunidades de aprendizaje activo, (c) es coherente, (d) de larga duración y (e) participación colectiva. Debido a que estas cinco características fueron parte de los hallazgos de MSP, la discusión comenzará con las aportaciones de los hallazgos de esta investigación a dichas categorías y continuará con las adicionales que se identificaron y aportaron al mejoramiento de las prácticas educativas de las participantes.

Conocimientos substanciales para la enseñanza de las matemáticas. El maestro de matemáticas no solamente debe desarrollar el conocimiento de la materia, sino que tiene que desarrollar la habilidad para comunicar ese contenido y para crear ambientes que involucren y promuevan el aprendizaje de los estudiantes (Resnick, 2010). Las maestras estuvieron inmersas en los talleres que ofreció MSP para desarrollar esos conocimientos substanciales para enseñar matemáticas que incluyeron el conocimiento del contenido de la materia, el pedagógico del contenido, el pedagógico general y el del currículo.

La adquisición de estos nuevos conocimientos constituye la base fundamental de la experiencia del maestro para mejorar su formación académica como maestro de matemáticas. Al igual, que en el modelo de Desimone (2011) el conocimiento de contenido y en cómo se enseña ese contenido constituyeron el foco del desarrollo profesional de MSP. La literatura discute
diferentes modelos de lo que constituye el conocimiento para la enseñanza de las matemáticas (Ball et al., 2008; Shulman, 1986; Shulman, 1987; Borko & Putnam, 1996). Aunque hay diferencias, tienen semejanzas en cuanto al conocimiento del contenido de la materia y en cómo se enseña ese contenido. El modelo de Ball et al. y el de Shulman (1986) se utilizan de base para la discusión de los hallazgos sobre los conocimientos del contenido especializado de la materia y el pedagógico del contenido. El modelo de Shulman (1986) se utiliza de referencia en la discusión de los hallazgos relacionados con el conocimiento del currículo.

La mayoría de las horas que pasaron las maestras en MSP fue en talleres de contenido un mínimo de 8 días en las actividades de los sábados y 8 en la de los veranos, donde mayormente participaban de actividades para adquirir el conocimiento especializado y el pedagógico de las matemáticas. Esta participación redujo la brecha del conocimiento de contenido para enseñar matemáticas que había antes de la participación en MSP. El nuevo aprendizaje ha ido desarrollando confianza para enfrentar la enseñanza de algunos tópicos de los estándares de medición y geometría los cuales causaban mucha ansiedad.

El conocimiento especializado de matemáticas que recibieron las maestras estuvo basado en contenido de los cinco estándares. Se desarrollaron oportunidades para obtener conocimiento de los conceptos y procedimientos en los temas de álgebra, geometría, análisis de datos y probabilidad, medición y numeración. Además, se interpretó que obtuvieron conocimientos sobre los principios subyacentes de los significados de conceptos de matemáticas tales como el significado de los números en la fracción, la relación del conjunto de los enteros y la recta numérica, la relación de los conjuntos de números, la relación entre unidades de medida, el significado de una función matemática, lo que es una figura plana, el concepto de número primo, el significado de los sistemas de coordenadas y su representación en situaciones de vida real. Se
consideró que las maestras estuvieron inmersas en conocimiento de contenido especializado para enseñar matemáticas.

El conocimiento pedagógico del contenido se refiere al conocimiento acerca de cómo enseñar un tópico o concepto que puede incluir las representaciones apropiadas, analogías, diferentes ejemplos para atender la diversidad del estudiantado, las explicaciones y demostraciones. Se incluyen además las situaciones problemáticas verbales y de vida real que se integran para darle sentido al concepto. Las actividades sobre el conocimiento pedagógico enfatizaron el uso de manipulativos para desarrollar el concepto, el diseño de problemas y situaciones para autenticar la matemática.

Existe la percepción en la investigadora que las maestras tenían diferentes habilidades o destrezas en las matemáticas y que es un elemento que impacta la ganancia en conocimiento. Los resultados de la investigación de Drake y Sherin (2006) apoyan este argumento. Ellos encontraron que la percepción que el maestro tiene sobre su habilidad en las matemáticas es un aspecto que interviene en la adopción de las prácticas educativas que estipula la reforma de los estándares. En esta investigación hubo cuatro maestras que manifestaron que le gustaban las matemáticas y parecieron demostrar mayor dominio de los conocimientos a base de la interpretación que hizo la investigadora en las respuestas a las técnicas de respuesta escrita inmediata y las notas de reflexión. Cuando se observaron los años de experiencia como maestro, la de menos experiencia y la de mayor experiencia parecen haber desarrollado más conocimientos que las demás. No se considera que los años de experiencia impacten de alguna forma la ganancia de conocimiento.

El modelo de conocimiento pedagógico de Shulman (1986) incluye conocimiento del maestro sobre la comprensión de lo que hace fácil o difícil el aprendizaje de tópicos específicos:
las concepciones y preconcepciones que tienen los estudiantes de diferentes edades y antecedentes. La matemática basada en estándares enfoca el desarrollo conceptual y el razonamiento. Se promueve el desarrollo de los procesos matemáticos, resolver problemas, razonamiento y prueba, comunicación matemática, conexiones entre tópicos y representaciones. A través del desarrollo de estos procesos el maestro promueve que el estudiante realice investigaciones colaborativas, resuelva problemas, haga hipótesis, construya representaciones, haga generalizaciones, piense sobre las matemáticas, haga críticas, haga conjeturas, desarrolle argumentos y pruebas, y haga conexiones dentro y fuera de las matemáticas (Goldsmith & Mark, 1999). Adicional, las estrategias que el DEPR recomienda para las prácticas de la enseñanza son aquellas que promueven la integración de las disciplinas y la investigación como el Aprendizaje Basado en Problemas (Departamento de Educación de Puerto Rico, 2015)

Lograr lo propuesto por Shulman (1987), Goldsmtih y Mark (1999) y el DEPR requiere desarrollar destrezas bien refinadas para dominar el conocimiento pedagógico del contenido, y el propio maestro debe ser ejemplo de altos niveles cognitivos del razonamiento. Adicional a lo expuesto, según Polly, Neale y Pugalee (2014), el entendimiento de los conceptos que alcanza el estudiante está directamente alineado a las demandas cognitivas del maestro, a la habilidad del maestro para apoyar la comunicación matemática durante las discusiones, al conocimiento del maestro acerca del pensamiento matemático y a cualquier conocimiento relacionado con lo que está enseñando.

Las entrevistas de las maestras parecen indicar que ahora están bien preparados para asumir el reto que trajeron los estándares, gracias a la ganancia de contenido para enseñar matemáticas. Las maestras expresaron apreciación por el modelaje de los recursos implantando las actividades con manipulativos. Sus comentarios reflejaron que diseñar y aprender a utilizar
los manipulativos fue algo beneficioso en su desarrollo como profesional de la enseñanza. De tal forma, sus expresiones avalaron las oportunidades de aprender a utilizar las actividades lúdicas en el desarrollo de las clases. Sus respuestas también informaron que gracias a estas oportunidades de aprender a utilizar manipulativos, juegos y diferentes formas de explicar los conceptos, favoreció el involucramiento de los estudiantes con diferentes niveles de aptitud académica fortaleciendo las oportunidades de aprendizaje para todos los estudiantes.

Sin embargo, las mismas entrevistas y los comentarios en las notas de reflexión y en la técnica de respuesta escrita inmediata aunque demuestran ganancia en contenido, reflejan que aún están en proceso de afinar el conocimiento para la enseñanza de las matemáticas. Las respuestas en ambas técnicas se refirieron a temas y discusiones específicas que habían estudiado en los talleres, aspecto que sugiere que las mismas respondían al área de confort de las maestras. Los comentarios de tres de las seis maestras en ambas técnicas discutían el mismo tema. Esto sugiere que las maestras transfieren como lo aprendieron, y están en proceso de crear sus propios planes, actividades o tareas de enseñanza a partir de sus nuevos conocimientos. Se considera que estas maestras tiene que romper barreras de conocimiento y habilidades pedagógicas para lograr altas metas cognitivas que requieren los estándares, tanto del maestro como del estudiante.

La tarea de la enseñanza que el maestro selecciona para ofrecer la clase establece la demanda cognitiva. En la técnica de respuesta escrita inmediata se les solicitó a las maestras que redactaran las tareas de aprendizaje para el procedimiento, el concepto, el razonamiento y avalúo. Dos de las participantes redactaron las tareas bastante claras según correspondía. Las demás especificaron las tareas en forma general. Parece haber dificultad en diseñar tareas de alto nivel cognitivo a pesar que el DEPR establece que la construcción de objetivos y assessment debe guiarse por el modelo de niveles de profundidad del conocimiento de Norman Webb.
(Departamento de Educación de Puerto Rico, 2015). Es importante señalar que el dominio del contenido de la materia es imprescindible para diseñar tareas de reto que estimulen el razonamiento profundo en el estudiante.

Las oportunidades que tiene el estudiante de desarrollar esos altos niveles de razonamiento depende del conocimiento del maestro (Tchoshanov, 2011). La demanda cognitiva que desarrolla el maestro en su práctica es función de su conocimiento. Debido a que en esta investigación no se utilizó la observación de clases no se tiene información relacionada a cómo las maestras llevaron a cabo las discusiones en la clases para el desarrollo cognitivo del estudiante. La información de las notas de reflexión y de la respuesta escrita inmediata deja ver que están en proceso de adquirir conocimiento para diseñar tareas de alto nivel. Esto puede tener repercusiones en los resultados de las pruebas de aprovechamiento que administra el DEPR. El diseño de las pruebas está alineado a los estándares de contenido. Los mismos son rigurosos. Si las tareas de enseñanza y las discusiones de clases no promueven ambientes reflexivos, de indagación, descubrimiento y reto los estudiantes no van a desarrollar altos niveles de razonamiento y se limitan las posibilidades de pasar las pruebas.

En esta investigación no sale a relucir como parte de los conocimientos substanciales el énfasis en las actividades de capacitación en el diseño y construcción de tareas de avalúo para la formación del aprendizaje de matemáticas. Las maestras identificaron algunas técnicas de avalúo en sus respuestas a las preguntas de investigación, pero sin abundar detalladamente en la construcción de las mismas. Este hallazgo es muy parecido al obtenido en la técnica de respuesta escrita inmediata. El diseño de avalúos es un área medular en la planificación de la enseñanza a través del modelo Understanding by design. El mismo fue adoptado por el DEPR para el diseño de la planificación de la enseñanza. El modelo hace referencia a tareas del avalúo
del desempeño y a otras evidencias. Esas otras evidencias incluyen avalúos para la formación del aprendizaje. Puede ser de gran utilidad para el mejoramiento de la enseñanza que los programas de desarrollo profesional incluyan, integrado a los conocimientos del contenido, el diseño de avalúos en matemáticas utilizando de referencia los mapas curriculares y el modelo de planificación *Understanding By Design*.

Conocimientos tecnológicos. El aprendizaje sobre tecnología representa otro de los conocimientos substanciales adquiridos por las maestras durante su experiencia en MSP. Ellos tuvieron la oportunidad de adquirir destrezas en el manejo de equipo tecnológico y de la web, y en la integración de la tecnología a las prácticas de enseñanza. Según Lawless y Pellegrino (2007), la tecnología se integra poco en la sala de clases a pesar de la gran cantidad de recursos disponibles en la web para la enseñanza. Se percibió en esta investigación que se utiliza mayormente para realizar presentaciones durante la clase, pero sin enfocar en el uso de aplicaciones disponibles en la web que puedan promover el desarrollo del razonamiento y el dominio cognitivo. Las oportunidades que MSP proveyó a estas maestras para el conocimiento tecnológico tienen un potencial de mejorar las prácticas en la sala de clase haciendo pertinente las actividades para los estudiantes y promoviendo una variedad de estrategias que apoyen la enseñanza de los conceptos.

Los conocimientos en tecnología favorecen que el maestro la utilice en beneficio de la instrucción diferenciada. A través de la Internet el maestro puede identificar contenidos con diferentes niveles de dificultad que puede utilizar para integrar en sus clases, enriquecer el contenido, y atender los intereses y el perfil educativo del estudiante. Hay una gran variedad de lugares disponibles con materiales auto correctivos que tienen un efecto motivador en el estudiante, a la vez que desarrollan destrezas y conceptos del contenido de la materia. El diseño
de blog le da la oportunidad al maestro de enriquecer su práctica y de tener un mecanismo de comunicación académica con el estudiante más allá de las horas laborables, y con materiales diferenciados que el estudiante puede seleccionar según su gusto o nivel cognitivo. El diseño de módulos interactivos es otra estrategia a disposición del maestro que puede fortalecer su enseñanza. Hay miles de posibilidades al alcance, pero es necesario extender la mano.

Conocimiento sobre investigación en acción. El contexto de MSP promovió conocimientos de investigación en acción y de la investigación en general. Según evidencia en las entrevistas y cotejo de documentos, la mayoría de los conocimientos aportaron a la adquisición de conocimientos para redactar una propuesta de investigación en acción. Además, hubo énfasis en el desarrollo de conocimientos sobre investigación con diseños experimentales, según evidenció el cotejo de documentos. La investigadora entiende que el beneficio mayor de estos conocimientos fue provocar la reflexión de las maestras sobre las prácticas educativas y el aprendizaje de sus estudiantes. En la medida en que estos conocimientos aporten al mejoramiento de la sala de clases y continúen más allá de haber sido parte de MSP, habrá una gran posibilidad de impactar en forma positiva el aprendizaje de los estudiantes. Una consecuencia de los conocimientos en investigación en acción es la reflexión para el mejoramiento de la enseñanza. Ese tema se discute más profundamente en la sección de quehacer educativo, porque se considera que el mismo tiene grandes repercusiones en el mejoramiento de las prácticas de la enseñanza.

Ambientes de aprendizaje participativos. Los ambientes de aprendizajes participativos promovidos por los instructores representan la dimensión de aprendizaje activo identificada por Desimone (2011). En el aprendizaje activo los maestros tienen la oportunidad de involucrarse, y recibir retroalimentación, analizando trabajos del estudiante o haciendo presentaciones. En los
ambientes de aprendizaje participativos de MSP las maestras tuvieron la oportunidad de compartir experiencias con los demás compañeros, trabajar en pares o grupos de colaboración, o diseñando planes o actividades como parte de las actividades de aplicación de los talleres. Un aspecto interesante de esa participación activa es que las maestras en los talleres desempeñan el rol del estudiante porque el recurso modela la clase tal y como ellas la pueden enseñar. Tales acciones parecen desarrollar empatía de las maestras hacia sus estudiantes porque experimentan las vivencias que el estudiante tiene en su sala de clases. Esa participación activa desarrollada en los talleres fue trasladada por las maestras en sus prácticas, promoviendo escenarios de aprendizaje que involucraron e interesaron a los estudiantes.

A través de las entrevistas no se pudo apreciar detalladamente las características del aprendizaje activo que promovió MSP. En las estrategias de recolección de datos con las maestras se mencionaron actividades tales como: (a) pegar dos hojas de papel…, (b) recortar cuadrados…, (c) copiar ejercicios en su libreta…, (d) completar un mapa de conceptos…, (e) el estudiante va a parear el término…, (f) el estudiante responderá problemas verbales…, (g) realizar actividades para recortar, crear, pegar, figuras planas, (h) utilizando un torbellino de ideas, (i) discutir un video, (j) usar palillos de madera, pega, papel de construcción para crear libro de factores y (k) preparar un foldable con los términos y los conjuntos numéricos y sus abreviaturas. Muchas de las actividades que se mencionaron se clasifican como aprendizaje activo pero no son de calidad (Hill, 2004). Actividades donde el estudiante corta y pega o dibuja si considerar el razonamiento matemático o los conceptos matemáticos involucrados no benefician el aprendizaje de las matemáticas ni el desarrollo cognitivo del estudiante. La esencia del aprendizaje activo es el desarrollo de niveles cognitivos altos.
La apreciación de la investigadora en cuanto a la calidad de las actividades para el desarrollo de altos niveles de cognición surgen de la técnica de Respuesta Escrita Inmediata y las notas de reflexión. En la técnica de Respuesta Escrita Inmediata de seis maestras, solamente una pudo redactar un problema de avalúo para el desarrollo cognitivo. La actividad de M1 establece pegar, recortar, pero no explica en detalles el propósito ni da ejemplos de los ejercicios asociados a la actividad de pegar y recortar. Dos de las maestras especificaron el diario reflexivo, pero no indicaron en qué forma iban a dirigir esa reflexión ni la relación de la misma con el contenido de matemáticas que se estaba enseñando. La técnica de respuesta escrita inmediata de M2 en la tarea de procedimiento tiene variadas actividades catalogadas como de aprendizaje activo. La maestra escribió que,

Se entrega una hoja con las figuras planas, con sus nombres y características. Se colorean las figuras, se recortan y se pegan en tarjetas. Luego la definición o descripción de cada figura se recortan y se pegan en tarjetas. Luego jugamos memory pareando la descripción con la figura (M2-REI).

En esta actividad los estudiantes están muy activos, sin embargo el nivel cognitivo se clasifica en memoria. De igual forma la actividad de M1 en la tarea para el desarrollo del procedimiento en la técnica de Respuesta Escrita Inmediata era una de mucha actividad, pero con énfasis en la memoria. La misma decía que el estudiante iba a “tirar el dado inflable y anotar la operación en la pizarra. El estudiante representa la suma o resta con sus bloques plásticos” (M1-REI). En una de las notas de reflexión de M3 parece ser que los estudiantes colorearon porque en la reflexión la maestra escribió: “estuvieron motivados hacia la tarea y utilizaron diferentes colores para representar los decimales. Fue más fácil para ellos representarlo en el papel cuadriculado”
(M3-NR). Tal actividad tiene potencial de generar actividad, pero parece quedarse en el nivel de memoria.

El programa tiene que evaluar hasta dónde está proveyendo para que los maestros pasen por el proceso de desarrollar aprendizaje activo en la clase de matemáticas, donde hayan oportunidades para hacer conjeturas, para usar el razonamiento deductivo e inductivo, para resolver problemas o construir soluciones sin usar un procedimiento, para construir aprendizaje a base del error del estudiante. Además, el maestro se involucra activamente en el desarrollo profesional cuando tiene oportunidades de diseñar y modelar lecciones de enseñanza, construye instrumentos de avalúo con diferentes niveles de profundidad para el razonamiento, construye actividades o lecciones diferenciadas a base del contenido, intereses o perfil de aprendizaje del estudiante y cuando puede planificar usando estrategias que promueven la construcción integral del aprendizaje del estudiante.

Vinculado. El componente vinculado es otro criterio de efectividad del contexto de MSP. El mismo es más amplio que el de coherencia identificado por Desimone (2011), pero no incluye la coherencia con las creencias. El contexto MSP desarrolla conocimiento para la enseñanza de matemáticas enfocado en creencias asociadas a la reforma. La coherencia que establece Desimone (2011) es con otros programas de desarrollo profesional, con los conocimientos y creencias del maestro, con las reformas y normas de la escuela y el distrito. El concepto vinculado contiene descriptores de coherencia y añade las experiencias en prácticas educativas en tiempo real que ejecuta el maestro y el apoyo individualizado a las necesidades únicas del maestro. La estructura de larga duración y sostenido de MSP creó oportunidades para que en el calendario de capacitación hubiese una extensión de tiempo disponible entre los talleres, lo cual permitía que las maestras implantaran los nuevos conocimientos y luego esa
La experiencia de enseñanza de las maestras en tiempo real pudo haber aportado a que el contexto se nutriera de las formas en que se enfocan las representaciones para enseñar los conceptos, las conexiones entre conceptos o errores de la práctica en la enseñanza de las matemáticas. Según Walter (2007), esto es beneficioso para el desarrollo profesional. De igual manera, ese vínculo pudo promover en el quehacer educativo diseño de lecciones mejor estructuradas y la reflexión sobre la enseñanza de las matemáticas. Otro beneficio, es que el maestro puede identificar sus propios errores en las explicaciones de los conceptos que interfieren con la enseñanza apropiada de las representaciones matemáticas. Esta oportunidad de tener maestros aportando sus auténticas experiencias al contexto de MSP promueve que este reflexione sobre sus prácticas, evalúe sus creencias e inicie los cambios que favorecen el aprendizaje del estudiante. En otras palabras, aporta al cambio del maestro.

Larga duración. El criterio de larga duración en MSP se dio de la misma forma en que lo define Desimone (2011). Las actividades de desarrollo profesional de MSP se dispersan durante todo un año desde junio a mayo. Dicho elemento fomenta la interacción de las prácticas con los conocimientos desarrollados en los talleres. El elemento de dispersión en el desarrollo
profesional de la investigación de Farmer, Gerretson, y Lassak (2003) apoya el hallazgo en MSP. Estos autores estudiaron el desarrollo profesional de maestros de matemáticas y uno de los componentes importantes era la dispersión del estudio por 18 meses. Tal dispersión favoreció cambios en la enseñanza centrada en el estudiante. Al igual, el estudio de Akerson y Hanuscín (2007) evidenció la efectividad de larga duración. La extensión amplia para desarrollar las actividades del programa fomentó el cambio del maestro porque este tuvo tiempo de explorar e implantar en la marcha e ir recibiendo apoyo sostenido.

Participación colectiva. La participación colectiva es una característica de efectividad de los programas de desarrollo profesional de consenso en la investigación sobre el tema (Birman et al., 2000; Blank et al., 2007; Garet et al., 2001; Guskey, 2003; Wei et al., 2007). Esta característica está presente en el programa de desarrollo profesional cuando las actividades se planifican para grupos de la misma escuela, del mismo departamento grado o nivel (Garet et al., 2001). En el caso de MSP, esa colectividad es parte del andamiaje de MSP, y las actividades se planifican para maestros del departamento de matemáticas del nivel educativo de cuarto al sexto grado.

A través de la estructura de los talleres de contenido, se puede apreciar en forma concreta la participación colectiva. En las reuniones de capacitación para desarrollar el conocimiento de contenido las maestras tuvieron la oportunidad de traer a discusión conceptos, destrezas, situaciones e inquietudes que surgían de su experiencia en la práctica y que aportaron al conocimiento de todos, incluyendo al instructor. Es una oportunidad que tiene el instructor para analizar las situaciones con sus maestros, y las ideas, soluciones o discusiones le permiten planificar o buscar mayor información que le sea útil para mejorar su práctica en las futuras actividades de capacitación profesional. Las reuniones de maestros de un mismo nivel favorecen
la comunicación porque se comparten materiales, planes o actividades de assessment. Además, como la mayoría de estos maestros también enseñan otra materia, les da oportunidad de discutir formas en cómo integrar el aprendizaje a otros contextos de su vida profesional. Se crean además oportunidades de reflexionar y compartir sugerencias acerca de cómo se atienden las necesidades de los estudiantes, que pueden incluir estrategias para el manejo de la sala de clases, para enfocar la instrucción diferenciada y la formación de grupos colaborativos, entre otros.

En la investigación de Akerson y Hanuscin (2007) la participación colectiva fue uno de los componentes más significativos para lograr las metas del programa. En esa investigación se examinó el impacto del desarrollo profesional en la concepción del maestro sobre la naturaleza de la ciencia y la estrategia de indagación para desarrollar el proceso de aprendizaje. Los autores expresaron detalladamente algunas de las experiencias de los maestros mientras participaron de los talleres. Así lo expresaron:

Los maestros llevaron a los talleres los marcos curriculares de ciencia y pasaron tiempo haciendo revisiones y adaptaciones. Ellos además, compartieron ideas y proveyeron retroalimentación unos a otros con relación a la enseñanza. Volvieron nuevamente a planificar y presentaron una sesión en la conferencia de ciencia titulada The Myth of the Scientific Method durante la cual compartieron estrategias para enfatizar NOS [la naturaleza de la ciencia] en las investigaciones de la sala de clases. Se involucraron en la redacción acerca del cambio en sus prácticas de enseñanza para describir sus ideas a los otros. Al final del taller ellos discutieron los cambios en sus puntos de vista como en su enseñanza (p. 5).

Las expresiones antes señaladas no solamente reflejan la oportunidad de colaboración que ofrece la participación colectiva, sino que presentan una imagen clara de lo que es el
verdadero aprendizaje activo. El maestro reflexionó, desarrolló la cognición, diseñó, aportó al
conocimiento de otros, desarrollo liderazgo y lo más importante, es que se dieron cambios para
el mejoramiento de la enseñanza.

Centro de recursos. Uno de los componentes de la estructura de MSP es mantener un
centro de recursos en la escuela del maestro que participa del programa. Se ubican en el salón del
maestro. De haber más de un maestro participando se selecciona el salón de uno de ellos. La
investigadora percibe que hay un gran aprecio por los materiales, las maestras los utilizan y han
fortalecido las prácticas de enseñanza. Por alguna razón que no se identificó en este estudio, las
maestras no reciben o reciben muy pocos materiales en sus escuelas para desarrollar las clases.
Los materiales, tales como los manipulativos para desarrollar los conceptos de los estándares
fortalecen el desarrollo de las prácticas de enseñanza. Una de las fortaleza del centro de recursos
en el programa MSP es que los materiales ya sean diseñados por los maestros o comprados por el
programa se aprenden a usar en los talleres. Los mismos tienen el potencial de desarrollar
ambientes de enseñanza que estimulen el razonamiento y desarrollen la creatividad. Muchos son
ideales para desarrollar la construcción del conocimiento. ¿Por qué decirle a un estudiante que
para cambiar metros a decímetros se multiplica por 10, si proveyéndole una regla con unidades
de medida del sistema métrico él lo puede descubrir? Este es un ejemplo sencillo de la
importancia del material para el aprendizaje. En la investigación de Clarke (1997) se dio un
hallazgo muy interesante con relación a los materiales de enseñanza. En una revisión de
investigaciones, él identificó 12 factores que en alguna manera influían en el proceso de cambio
de rol del maestro para enseñar bajo la reforma. El factor materiales innovadores de enseñanza
influyó de gran manera en el cambio de creencias del maestro. Esto se evidenció cuando en el
tema de unidades de medida el maestro comenzó la clase con problemas no rutinarios sin dar el
procedimiento para que el estudiante, se preguntara, explorara, descubriera e hiciera conjeturas. El maestro creó o fortaleció la creencia de que el estudiante puede ser exitoso en el aprendizaje sin previamente haberle enseñado el procedimiento que lo condujera a la solución del problema.

Visitas de apoyo. Uno de los componentes de la estructura de MSP son las visitas de apoyo que reciben las maestras de profesores mentores. El objetivo principal, según manifestaron las maestras, era asesorar durante el diseño de la propuesta de investigación, pero se evidenció que hubo asesoría para la implantación de los nuevos conocimientos. Se calendarizan cuatro visitas de apoyo por cada maestro durante el año. En esta investigación no se identificó el dato de cuántas horas equivale una visita.

Las visitas de apoyo vinieron a conformar la modalidad de desarrollo profesional conocida como coaching. Se aclara que en esta investigación los términos coaching, mentor y asesoría se utilizan de la misma forma. En el proceso de coaching un profesor experto colabora con el maestro para desarrollar conocimiento de contenido y pedagógico para mejorar la práctica educativa. Aunque todavía no hay un gran cúmulo de evidencia a favor de la efectividad del coaching, sí ha surgido una amplia literatura que sostiene su efectividad para el cambio del maestro (Akerson & Hanuscin, 2007; Clarke, 2007; Guskey, 1995; Sailors & Shanklin, 2010). El coaching tiene el apoyo de las siguientes organizaciones profesionales: International Reading Association, National Council of Teachers of English, National Council of Teachers of Mathematics, National Science Teachers Association, National Council for the Social Studies, Alliance for Excellent Education, National Staff Development Council, and Association for Supervision and Curriculum Development (Sailors & Shanklin, 2010). Dicha aceptación es una de las razones por las cuales se promueve como modelo de desarrollo profesional.
La efectividad del coaching depende de que el asesor tenga ciertas características. Al respecto, Koch y Appleton (2007) enumeraron unas características de un buen mentor: (a) al menos tener conocimientos del currículo, del contenido de la materia, del contenido pedagógico de la materia, del pedagógico general y de avalúo, (2) altos niveles de destrezas interpersonales, (3) ser reconocido por los maestros como experto que puede proporcionar ayuda, (4) estar al día en los conocimientos educativos y (5) tener una considerable flexibilidad en el tiempo. Según la investigadora, los hallazgos reflejan que se puede evidenciar que los mentores en MSP cumplen con las características desde la una a la cuatro. La número cinco no se identificó en los datos.

Una investigación que sostuvo la efectividad del coaching como componente del desarrollo profesional efectivo fue la de Akerson y Hanuscin (2007). El coaching individualizado se ofreció en el lugar del trabajo del maestro. Los asesores modelaron clases en el salón, proveyeron retroalimentación en las lecciones que enseñaban los maestros y colaboraron con la planificación de lecciones y con ideas de avalúos. El mismo reflejó resultados positivos para el cambio del maestro. Al igual, en el estudio de Clarke (1997) hubo un asesor de matemática ofreciendo coaching durante la implantación de unas unidades de enseñanza. Una maestra expresó que había aprendido más sobre las matemáticas en los pasados 2 años que durante cualquier año previo y fue a consecuencia de ser asesorada por alguien con alto dominio en las matemáticas.

Por el contrario, en la investigación de Koch y Appleton (2007) se lograron cambios, pero no los resultados en el cambio del maestro del nivel elemental al que aspiraba el desarrollo profesional. La asesoría fue ofrecida por profesores mentores universitarios a través de actividades semi formales en grupos pequeños, en cooperación maestro-mentor en la planificación de unidades de enseñanza y en cooperación maestro-mentor enseñado las unidades
diseñadas. Hubo ganancias en el conocimiento y destrezas, y mayor profundidad en los niveles de entendimiento con relación al contenido y la pedagogía de la materia. Las metas para lograr altos niveles de conocimiento requerían crear algo nuevo como una unidad de enseñanza. Esto no se logró.

Instancias de transformación. El viaje educativo por más de 2 años que experimentaron las maestras en MSP tuvo el potencial de ir creando competencias para su evolución como líder de la enseñanza. El componente de aprendizaje activo facilitó escenarios donde las maestras podían diseñar planes, compartir prácticas de enseñanza con otros maestros, desarrollar clases demostrativas, desempeñar el rol de coach de sus compañeros maestros, involucrarse en la investigación en acción y ser conferenciantes en asambleas llevadas a cabo por el programa. Estas competencias concuerdan con las que enumera Dozier (2007) que incluyen: (a) son mentores, (b) lideran esfuerzos de mejoramiento en la escuela, (c) desarrollan currículo y (d) proveen desarrollo profesional para sus colegas. El liderazgo instruccional que estos maestros están en proceso de afinar tiene efectos positivos en los estudiantes, escuela y la profesión del maestro (Coggins & McGovern, 2014). Sin embargo, ellos tienen pocas oportunidades para ir desarrollando el liderazgo que lo trasforme en agente de cambio (Dozier, 2007). Hay ausencia de oportunidades de adiestramiento para desarrollar el rol del maestro como líder de la enseñanza (Dozier, 2007). Ese potencial puede materializarse si en el contexto escolar se promueven estrategias para continuar desarrollando ese liderazgo. Estos maestros parecen tener las competencias necesarias para ser líderes en sus escuelas y sus distritos. Ellos parecen ser aprendices de por vida, tener destrezas para facilitar la educación de adultos y la capacidad de establecer propósitos y perseguirlos (Coggins & McGovern, 2014). En la medida en que los administradores de los distritos y escuelas fomenten el liderazgo instruccional del maestro existe
la probabilidad de desarrollar el poder colectivo de la comunidad escolar para mejorar los resultados del aprendizaje de los estudiantes.

El desarrollo de la persona: elemento esencial para la evolución del maestro

Las maestras participaron del programa en forma voluntaria. Ellas pasan más de 200 horas en las actividades de desarrollo profesional. Las manifestaciones de estas y la interacción de la investigadora durante el proceso de las entrevistas ayudaron a crear una imagen de ese maestro que participó en el programa. La proyección de la imagen del maestro representa una de las evidencias que sostienen el apoderamiento de los nuevos aprendizajes. Los indicadores identificados en la creación de esa imagen fueron los siguientes: (a) acepta sus limitaciones, (b) es receptivo a nuevos aprendizaje, (c) le caracteriza la disposición, (d) rompe barreras para perseguir un logro y (e) hace un pacto con el aprendizaje del estudiante.

Estas maestras llegaron a la capacitación en busca de algo que les faltaba. Ese algo es dominar el contenido al cual tienen que enfrentarse. Cuando comienzan con las actividades llegan con altos niveles de receptividad a los nuevos conocimientos. Una de las maestras dijo que “O sea, que yo lo trabajo aquí y ya estoy loca por que llegue el lunes para yo llevarlo a la sala de clases” (M6-E). Ella confía en lo que recibe, lo considera bueno para sus estudiantes. A lo largo del proceso de capacitación va desarrollado confianza, segundo elemento de la persona que interviene para la evolución del maestro. Esa confianza es porque los temas que se desarrollan parten de sus necesidades inmediatas en la sala de clases, porque tienen coherencia con los estándares y expectativas que trabaja en su salón y con su nivel de enseñanza, y porque ha disminuido el tamaño de la brecha de la inseguridad en el conocimiento del contenido de la materia. Estos elementos de la confianza interactúan en pos del cambio, representando por la implantación de las nuevas prácticas. El desarrollo de la confianza los estimula a tomar riesgos.
Ahora encuentra otras posibilidades de enfocar el tema que siempre había enseñado de la misma forma o con el mismo libro, como expresó M1.

Estos hallazgos son incongruentes con el modelo de desarrollo profesional que presenta Guskey (2002) y que enfatiza en la secuencia en que se da el cambio del maestro. Según el modelo, los tres resultados más importantes del desarrollo profesional son: (a) cambio en las prácticas, (b) cambio en las creencias y actitudes, y (c) cambio en los resultados del aprendizaje. La postura de Guskey sostiene que el cambio en creencias y actitudes del maestro ocurre si se logra el mejoramiento en el aprendizaje de los estudiantes a consecuencia de la implantación de las prácticas de enseñanza. El planteamiento de Guskey es que la experiencia de la implantación exitosa es la que cambia las actitudes y creencias. Si la experiencia es una donde no se evidencia que mejora los resultados de aprendizaje del estudiante, entonces no se da el cambio del maestro. En esta investigación las maestras proyectaron una imagen que las predisponía al cambio y por consiguiente aceptaban los nuevos conocimientos, y como los consideraban beneficiosos, entonces los implantaban en la sala de clases. Los dos indicadores de la imagen que proyecta el maestro y que favorecen ese cambio son la aceptación de las limitaciones y la receptividad a los nuevos aprendizajes. Quizás la incongruencia con el modelo de Guskey (2002) se deba a que son maestras con preparación académica general y no especializada. Un argumento a favor al respecto lo sostiene Zwiep y Benken, (2013). Ellos llevaron a cabo una investigación sobre el aprendizaje de ciencias y matemáticas de maestros que enseñaban en el nivel elemental en los grados desde el cuarto al noveno mientras participaban de unos talleres. Los hallazgos informaron que los conocimientos de reto a los que se enfrentaron estos maestros crearon momentos de incomodidad que le permitieron crecer y cambiar. Se dio una receptividad al
aprendizaje de reto. Sería conveniente, entonces dirigir investigaciones que comparen el cambio del maestro especializado en la materia versus el no especializado.

Una de las características más significativas de esa imagen, según la llamó la investigadora, es la que hace un pacto con el aprendizaje del estudiante. Según Snowder (2007), el maestro que tiene la visión de que el estudiante puede desarrollarse intelectualmente son probablemente más apasionados acerca de la enseñanza. El argumento de Snowder es lo que lleva a la investigadora a utilizar la palabra pacto y no compromiso. El pacto es más profundo que el compromiso, contra viento y marea hay que cumplirlo. Ellos rompen las barreras que encuentran a su paso para lograr el aprendizaje del estudiante. Si no hay una computadora en el salón y el maestro considera que al utilizarla logra profundizar en el aprendizaje del estudiante pues utiliza la propia. Snowder continúa diciendo que estos maestros tienden a compartir esa pasión con los colegas y sienten que es parte de su compromiso apoderar a otros a enseñar matemáticas. Ese maestro particularmente lo representó M3. Sus responsabilidades son mayormente con los estudiantes de educación especial, pero cuando su compañera le informó que tenía lagunas en el contenido, ella tomó la batuta en el proceso de aprendizaje. Fue reuniéndose con ella y enseñándole, pero además tomó las riendas de la enseñanza convirtiéndose en un coach. Lo que guía a M3 es ese pacto para que todos los estudiantes aprendan.

La disposición es otra dimensión de la imagen del maestro. La investigadora considera que este es el maestro que sostiene la escuela sobre sus hombros. Ellos son los líderes que dan el todo porque su escuela no se dirija a la deriva. Son los que están dispuesto a ofrecer la clase al grupo que otros rechazan, son los que aceptan el programa de clases al que los demás le huyen. Cuando hay una situación urgente y los demás no dan la mano, aparece el dispuesto.
El tercer indicador de la dimensión persona, eje que interactúa con el contexto para enriquecer el quehacer educativo, es el respaldo al maestro. Los aspectos emocionales es un aspecto a considerar a la hora de promover el cambio del maestro (Snowder, 2007). Parece ser que los diseñadores de MSP lo tuvieron en cuenta. En el contexto se identificaron dos tipos de interacción que promueven el respaldo al maestro: la interacción, afectiva y la intelectual. A través del diseño de actividades se promueve la interacción entre pares, y entre instructores, administradores y participantes. Esa interacción afectiva mantiene al maestro motivado porque siente que se preocupan por él, lo respetan y lo valoran como persona. Es muy diferente a la experiencia en sus escuelas. Lo que viven en sus escuelas es “es un poquito duro…. [y aquí en MSP] los compañeros son bien buenos” (M3-E). La interacción afectiva entre pares favorece que se den apoyo porque hablan de sus inseguridades y de sus problemas comunes. La participación colectiva los monta a todos en el mismo barco, donde como grupo tienen libertad de expresar sus emociones, de reflexionar sobre sus preocupaciones, y compartir soluciones para dirigir el timón del barco y no permitir que se dirija a la deriva.

Esa dimensión afectiva fue un hallazgo que salió a relucir en la investigación de Akerson y Hanuscin (2007). Un elemento de efectividad del desarrollo profesional fue la naturaleza colaborativa del personal y los maestros, y entre los mismos maestros. Hubo negociaciones de metas para los días de reunión y se trabajaba según los acuerdos de las metas. Los autores aclaran que se mantuvo el énfasis de las metas del programa, pero se negociaron aspectos para tomar en consideración necesidades afectivas de los maestros y el propio personal.

Por otra parte, la interacción intelectual es la que mantiene al maestro informado en los conocimientos que son necesarios para que progrese en su ejecución profesional. Hay especial atención de los instructores en atender necesidades específicas que salen a relucir en los talleres.
En MSP participaron maestras que atendían estudiantes en la corriente regular y de educación especial. Las de educación especial sintieron ese respaldo porque el instructor se preocupaba por conocer cuál era la clientela que atendía cada maestro y entonces en las actividades de aprendizaje diseña y discutía problemas adecuados para atender dicha población (M6-E).

La evolución del maestro como reflejo del mejoramiento de la docencia

La tercera dimensión gestora de la evolución del maestro fue el quehacer educativo. En esta dimensión es que se proyecta el cambio del maestro, evidenciado por la implantación de los nuevos conocimientos. En el quehacer educativo las maestras construyeron entornos de enseñanza para el aprendizaje auténtico, reflexionaron para el mejoramiento de la enseñanza y percibieron un mayor involucramiento de los estudiantes en el proceso de aprendizaje. Estos tres elementos aportaron al mejoramiento de las prácticas de la sala de clases y tienen el potencial para mejorar el aprovechamiento académico del estudiante.

Entornos de enseñanza para el aprendizaje auténtico. La discusión de los tres temas que sostiene el quehacer educativo es evidencia de que se está trazando una ruta hacia el cambio. Hay disposición de las maestras para implantar los nuevos conocimientos. Ellas van paso a paso, pero se está dando el proceso, no hay resistencia. Los entornos de enseñanza para el aprendizaje auténtico que desarrollaron las maestras estuvieron matizados por el uso de manipulativos para desarrollar los conceptos, la inclusión de situaciones del diario vivir en las discusiones matemáticas y la incorporación de actividades lúdicas que promovían un ambiente participativo. Estos escenarios testifican que se camina en la ruta del cambio.

Hay mucha literatura acerca del proceso en que se da el cambio del maestro. Ya se mencionó en la sección de la dimensión **Persona** la incongruencia del modelo de cambio de Guskey (2002) con los hallazgos de esta investigación. En esta sección se amplía el tema
relacionado al cambio del maestro y su relación con los hallazgos identificados en la investigación.

Las investigaciones cuyo foco son las creencias del maestro y su relación con el cambio en las prácticas de enseñanza han sido estudiadas por muchos. Manouchehry y Goodman (1998) investigaron sobre el proceso de implantación de un nuevo currículo con el propósito de investigar sobre variables que lo promovían o impedían. Los investigadores concluyeron que los cambios en creencias no ocurren meramente porque hay que implantar nuevos currículos. Las creencias personales acerca de la naturaleza de la enseñanza tienen injerencia en cuanto al enfoque que el maestro da a la enseñanza del contenido. Ellos observaron que los maestros utilizaban diferentes enfoques en cuanto a la enseñanza tradicional o basada en reforma que caracterizaba a los nuevos currículos. A mayor experiencia enseñando en forma tradicional mayores cuestionamientos se hacían en cuanto a la efectividad del nuevo currículo. En cambio, a mayor experiencia en currículos de reforma, mayor aceptación del nuevo currículo. Las creencias jugaron un rol importante en cuanto a la implantación del nuevo currículo.

Coburn (2004) también investigó acerca de las creencias y su relación con el cambio del maestro. El propósito de su estudio fue identificar formas en que el maestro respondía a presiones institucionales externas para adoptar un nuevo currículo. En esa investigación Coburn identificó cinco niveles que van desde el rechazo total hasta aceptación a través de la acomodación de los nuevos conocimientos en el sistema de creencias del maestro. Los hallazgos evidencieron que las presiones institucionales alcanzan las prácticas del maestro promoviendo cambios. Los mismos no ocurren aislados de las creencias y visiones del maestro sobre el mundo, sino que antes de aceptarlos los analiza a partir de su sistema de creencias y construye la práctica armonizando los elementos del ambiente externo con sus prácticas previas. En alguna
medida esa investigación evidenció que las presiones externas contribuyen a que se implanten las nuevas prácticas. Ese elemento de presión externa se dio en MSP a través de las visitas de apoyo. Una de las encomiendas del coach era evaluar la implantación de los nuevos conocimientos a través de una rúbrica con unos criterios ya establecidos. Esa presión en unión a las creencias de las maestras que favorecían los estándares pudo ser un impulso que fomentó la implantación de los nuevos conocimientos.

Al igual que los maestros en los estudios de Manouchehry y Goodman (1998) y de Coburn (2004), las maestras que participaron en esta investigación tienen un sistema de creencias. El mismo parece estar alineado a la enseñanza basada en estándares. Por tal razón, aceptan los nuevos conocimientos y van integrándolos a su práctica. Algunas de las creencias identificadas en esta investigación son las siguientes: (a) todo estudiante tiene la capacidad de aprender si recibe una educación de calidad, (b) el salón de clases es diverso y por tal razón hay que diferenciar la enseñanza, (c) hay que proveer diferentes formas para involucrar al estudiante en el aprendizaje, (d) la participación del maestro en desarrollo profesional crea posibilidades para los estudiantes, (e) el maestro tiene que estar constantemente preparándose (f) la colaboración entre maestros fortalece las prácticas en la sala de clases, (f) hay que utilizar diferentes estrategias para fortalecer el desarrollo cognitivo del estudiante (g) los manipulativos y situaciones de vida real fortalecen el desarrollo conceptual y (h) la implantación de una variedad de estrategias fortalecen el proceso de aprendizaje.

Dos elementos del contexto MSP aportaron en forma significativa al sistema de creencias que favorece la reforma basada en estándares. El elemento vinculado del contexto de MSP proveyó oportunidades de compartir experiencias y buscar soluciones a los problemas de enseñanza que enfrentaban en su nivel educativo. En esas oportunidades los maestros expresan
sus valores y comparten las prácticas que han sido exitosas en la sala de clases. Según Guskey (1995), esas oportunidades le dan efectividad al programa de desarrollo profesional y promueven la implantación de los cambios.

El desarrollo profesional que propicia colaboración tienen un potencial para generar cambios en creencias que fortalezcan los esfuerzos de las reformas educativas (Johnson et al., 2010; Ramberg, 2014; Fullan, 2007). El contexto MSP propició oportunidades de colaboración mayormente en los talleres y en las visitas de apoyo. Esas oportunidades pudieron ir aportando al sistema de creencias a tono con la reforma de los estándares.

Uno de los elementos que surge en la literatura referente a propiciar el cambio es el liderazgo escolar. Zimmerman y May (2003) plantean que el liderazgo instruccional del director de la escuela es crucial para la educación de calidad. Según y Manouchehri y Goodman (1998), el cambio en prácticas educativas se fortalece en la medida que líderes con prestigio de la escuela o distrito colaboren con el maestro durante la implantación del cambio. En la investigación de Clarke (1997), de los 12 factores que influyen en el proceso de cambio, cuatro tienen que ver con la escuela o distrito: (a) el director y comunidad escolar, (b) apoyo interno del personal, (c) el personal de apoyo externo y (d) las condiciones de día a día bajo las cuales el maestro trabaja. Esa presencia o ausencia de un liderazgo progresivo es fundamental en la persistencia del maestro para implantar efectivamente los nuevos aprendizajes.

Al respecto, el liderazgo escolar que promueve el cambio del maestro estuvo ausente en los hallazgos de esta investigación. El director de la escuela se involucró para autorizar la participación de las maestras en el programa MSP. Tener maestros participando en el desarrollo profesional fortalece los datos en el informe de logros de la escuela y es un hallazgo importante para la evaluación del maestro. Pero, no debe quedarse ahí. La investigadora tiene la percepción
de que en estas escuelas no se ha desarrollado una cultura para el desarrollo profesional del maestro. Puede ser que se desarrolle porque lo exige el DEPR y no porque exista la creencia de que es necesario para alcanzar el mejoramiento del aprendizaje del estudiante. En los distritos escolares, al igual que en las escuelas, parece haber ausencia de una cultura para el aprendizaje del maestro. Los facilitadores en los distritos conocen que tienen maestros participando de desarrollo profesional, pero por alguna razón los maestros se quedan solos implantando los nuevos conocimientos. Ellos son expertos en la materia. Esa colaboración puede aportar en forma significativa al mejoramiento de las prácticas.

Existe la necesidad de desarrollar una cultura de aprendizaje del maestro, donde se planifiquen oportunidades para que aquellos que participan de desarrollo profesional puedan tener espacios para enseñar a otros. Hay que planificar para que haya oportunidades de reflexión sobre las prácticas educativas y en colaboración genuina todos crezcan profesionalmente para el mejoramiento de los resultados del aprendizaje de los estudiantes. Se reconoce que existen muchas dificultades de lograr esa cultura de aprendizaje, pero para lograr la calidad educativa hay que luchar contra ellas y derribarlas.

Los resultados de la investigación de Zimmerman y May (2003) están en acuerdo con lo expresado anteriormente. Estos indican que los directores reconocen la necesidad de renovarse y de desarrollarse profesionalmente, pero mencionaron que había unas barreras a las que tenían que enfrentarse y que limitaban su liderazgo instruccional. Las barreras que mayormente identificaron fueron la falta de recursos financieros y la falta del tiempo. Otros factores que mencionaron fueron la falta de maestros substitutos, issues de contratos y actitud de resistencia del maestro. La situación se hace más difícil porque el desarrollo profesional no puede proveerse en horas laborables, debido a como se indicó, no hay maestros substitutos.
A pesar de todos estos factores que se combinan para afectar el liderazgo instruccional en las escuelas, Zimmerman y May (2003) consideran que el director tiene una responsabilidad crucial en crear ambientes donde el cambio del maestro tenga lugar. Según estos autores, “los directores en colaboración con sus maestros deben ser creativos en el uso del tiempo de tal forma que se libere el maestro para perseguir el desarrollo profesional en el tiempo de la compañía” (p. 43). Un argumento a favor de lo que sugieren es que el desarrollo profesional efectivo está inmerso en las prácticas de enseñanza del maestro. Por tal razón, el director debe fomentar que los maestros formando comunidades de aprendizaje, se involucren en actividades basadas en indagación y reflexión para mejorar la enseñanza. Esto se puede lograr en cuanto el director paso a paso construya la capacidad de la escuela estableciendo estructuras para el aprendizaje del maestro. Recomienda además, que el director tiene que solicitar colaboración del personal de otras oficinas educativas, en el caso de Puerto Rico, de los distritos, regiones o nivel central. Unos de los elementos que favorecen que reciba la ayuda es la recopilación de datos y la evidencia que sostenga la necesidad, y apoyen la relación directa de las actividades del desarrollo profesional con el aprendizaje del maestro y de sus estudiantes. Es imprescindible entonces, que la escuela construya una cultura de evidencia a base de datos, que apoye las propuestas o soluciones que respondan a los problemas educativos identificados.

Reflexión para el mejoramiento de la enseñanza. “Los programas de desarrollo profesional efectivo permiten al maestro iniciar y llevar a cabo activamente investigaciones en sus escuelas y en sus salones de clases (Nishimura, 2014, p. 21). “Algunas de las más poderosas experiencias de aprendizaje ocurren en el propio salón de clases del maestro a través del auto examen u observación” (Desimone, 2011, p. 69). Parte de las experiencias de las maestras en MSP fue precisamente obtener conocimientos a partir de la reflexión de su práctica. El propósito
de esta experiencia fue explorar, reflexionar y mejorar la enseñanza y aprendizaje a través de la aplicación de los conocimientos adquiridos sobre la investigación en acción.

Este tipo de investigación es una alternativa que tienen las escuelas para desarrollar una cultura de aprendizaje del maestro y reflexionar para el mejoramiento de la enseñanza. Es una forma ideal para el maestro desarrollar el aprendizaje desde su sala de clases y sin invertir grandes cantidades financieras. Además, es “incrustado” en las prácticas educativas, una de las características que define la efectividad de los programas de desarrollo profesional (Nishimura, 2014).

La reflexión para el mejoramiento de la enseñanza fue una de las categorías que se identificaron en la dimensión quehacer educativo que se desarrolla en MSP y fortalecen el conocimiento de investigación del maestro a través de la estructuras de conferencias y visitas de apoyo que conforman parte del armazón del contexto. Uno de los requisitos del programa MSP es desarrollar una investigación en acción. Los maestros preparan la propuesta, implantan en la sala de clases, analizan los datos y divulgan los resultados. Se les provee la oportunidad de adquirir conocimientos en investigación en acción, y en diferentes diseños de investigación, con énfasis en diseños experimentales. Según la investigadora, las orientaciones sobre investigación cubren suficientes temas como para que el maestro se adentre en el proceso y pueda producir su investigación.

A pesar de toda la información sobre investigación que han adquirido las participantes, y que la mitad ha participado más de 3 años en el programa, solamente una de las entrevistadas ha hecho dos propuestas, dos han hecho una y dos no han podido terminarlas. La investigadora considera que los participantes han tenido dificultad para internalizar los conocimientos para poder diseñar la misma. Se considera que de alguna manera el coaching no ha sido lo suficiente
efectivo para que todas las participantes logren culminar el proceso de investigación en acción. Además, hay que considerar que otro argumento que limita esa culminación puede ser la cantidad de tiempo fuera de horas laborables que el maestro tiene que dedicar a la búsqueda de información y a la redacción de cada una de las partes. Otro aspecto en contra, es que los padres tienen que autorizar la participación de sus hijos en la investigación y el proceso puede dilatarse. Todo esto puede crear una carga emocional del maestro que le añade a la que como profesional de la enseñanza ya tiene. Esta es un área que necesita fortalecer MSP. La investigación en acción es poderosa para identificar cuales técnicas son o no efectivas para mejorar el aprendizaje del estudiante. Si el maestro conoce tal información, entonces puede planificar para desarrollar las prácticas basadas en dicho conocimiento. Por eso es tan importante que se evalúe y busquen formas de involucrar más estrechamente al maestro con el proceso de investigación en acción.

Involucramiento del estudiante. En el quehacer educativo es que se determina la efectividad de MSP en cuanto al cambio del maestro y el mejoramiento del aprendizaje del estudiante. Los hallazgos de esta investigación no reflejan que se haya dado mejoramiento en el aprovechamiento académico a consecuencia de la participación de las maestras en el programa. En cambio, los resultados de las entrevistas sí proveyeron información de conexiones positivas entre la participación de las maestras y el involucramiento de los estudiantes durante las actividades de aprendizaje. Varias maestras informaron que sus estudiantes no querían irse del salón cuando tocaba el timbre porque estaban entusiasmado con las actividades del salón de clases. Está la percepción de que el estudiante se sintió más interesado porque ahora la maestra usaba manipulativos y juegos para crear las clases. Otra maestra informó que los estudiantes que el año anterior tomaron la clase con ella, sabían más que los que tomaron la clase con otra maestra. Este año esos estudiantes están tomando la clase de matemáticas con ella y pudo
comprobar las limitaciones en aprovechamiento académico que trajeron, comparado con los estudiantes a los que ella les había dado la clase. Se especula entonces, que el dominio en contenido que esta maestra ha alcanzado debido a su participación ha creado receptividad de los estudiantes al aprendizaje y mayor aceptación a los estilos de enseñanza. El dominio en contenido pedagógico ha logrado capturar la atención del estudiante. Otra maestra informó que los comentarios de los padres mostraban satisfacción hacia labor de la maestra. Estos comentarios pueden deberse a que los padres ya no tienen que lidiar tanto con las asignaciones o utilizar tanto tiempo para estudiar con sus hijos porque han logrado mejor entendimiento de los contenidos que están aprendiendo.

Los hallazgos de Steven y Heather, (2013) tienen alguna similitud con los de esta investigación. El propósito del estudio que llevaron a cabo fue explorar la relación de un desarrollo profesional basado en la web con el aprovechamiento académico y otras medidas de la escuela y estudiantes. Los hallazgos reflejaron que hubo mejoramiento en la retención y la disciplina de los estudiantes. También concluyó que la participación de los maestros los había enlazado más con su trabajo, se mostraban más felices y efectivos y posiblemente más satisfechos con su trabajo, elementos que lograron aumentos en la retención escolar.

Par resumir, se cita uno de los estándares para el desarrollo del maestro del documento *Professional Standards for Teaching Mathematics* (NCTM, 1991) que la investigadora considera describe la imagen de la evolución del maestro que está formando todo el andamiaje de MSP.

Ser maestro de matemáticas significa desarrollar un sentido de identidad como maestro. Esa identidad crece sobre el tiempo. Se construye a través de múltiples experiencias con la enseñanza y el aprendizaje. Además, esta es reforzada por la retroalimentación del estudiante que indican que están aprendiendo matemáticas, de colegas quienes
demuestran respeto profesional y aceptación, y de una variedad de recursos externos que demuestran el reconocimiento de la enseñanza como una profesión de valor. Los maestros con confianza en matemática demuestran flexibilidad y confort con el conocimiento matemático y compromiso con su propio desarrollo profesional dentro de la amplia comunidad de educadores de matemáticas (p. 161).

Propuesta reflexiva sobre la evolución del maestro

El programa de MSP constituye una de las experiencias de múltiples aprendizajes que vivieron las maestras para ir evolucionando en el proceso de construcción de una nueva identidad profesional. Esas experiencias las nutrieron de conocimientos adicionales para enseñar los estándares y expectativas de matemáticas, para integrar la tecnología y para promover la reflexión de la práctica y la implantación de innovaciones educativas a través de la investigación en acción. La ganancia en conocimiento provocó sentimientos de mayor seguridad y confianza para enseñar los conceptos y destrezas de matemáticas. La variada estructura de MSP, el apoyo afectivo e intelectual a las participantes, y los lazos estrechos que formó con el contexto escolar promovieron experiencias enriquecedoras que fortalecieron las prácticas educativas.

El análisis de los datos vislumbra unos elementos que beneficiaron el conocimiento del maestro. Se fortalecieron conocimientos para la enseñanza de contenido de fracciones, decimales, sistemas de medidas, estadísticas, ecuaciones, funciones, geometría, probabilidad, entre otros. Las experiencias para el conocimiento de las matemáticas incluyeron el diseño y uso de manipulativos, realizar representaciones de los conceptos, diseñar problemas verbales y realizar conexiones entre situaciones de vida real para construir escenarios auténticos para el aprendizaje de las matemáticas. Los conocimientos sobre el currículo de matemáticas
promovieron el entendimiento de la verticalidad y profundidad del contenido que se trabaja en cada grado.

Estos conocimientos han provisto unas herramientas con potencial de transformar la sala de clases. Las prácticas se han ido fortaleciendo, especialmente con la inclusión de los manipulativos para desarrollar los conceptos y las actividades lúdicas para promover una mayor participación e involucramiento del estudiante en la sala de clases. Además, las actividades de aprendizaje contextualizado que están integrando algunas de las participantes fomentan la transformación de las prácticas de enseñanza.

Los datos recolectados apoyan el juicio valorativo que hizo la investigadora con relación a que las maestras están en el proceso de evolución hacia la trasformación y el desarrollo de una nueva identidad profesional. Sin embargo, no se ha logrado culminar el proceso que requiere transformar la sala de clases como lo promueve la reforma de los estándares. Esta reforma promueve una pedagogía donde se planteen tareas de alto reto, que faciliten el cuestionamiento y dirijan al estudiante a realizar conjeturas acerca de los conceptos y las conexiones entre ellos (McGee, Polly & Wang, 2013). Significa entonces, que el salón donde se practica la reforma de los estándares es un lugar donde predomina el razonamiento, la solución de problemas, y las discusiones de clases donde el maestro construye a base del aprendizaje previo y sobre el error del estudiante. Es un escenario donde el estudiante tiene oportunidades de descubrir fórmulas y procedimientos porque el maestro construye y diseña tareas que promueven la creatividad y el descubrimiento. El diseño y uso de los manipulativos es una alternativa que ha provisto MSP, y que en la medida en que los maestros la utilicen para que el estudiante razone y desarrolle ideas matemáticas tiene un gran potencial de efectividad para el aprendizaje (Briars, 1999).
El salón de matemáticas que promueve el DEPR contribuye “al desarrollo integral del estudiante, propiciando experiencias de aprendizaje que lo capaciten en el razonamiento para la solución de problemas y toma de decisiones de la vida diaria y [….] ha de servir de vehículo principal para el desarrollo de las destrezas de pensamiento desde una perspectiva crítica y creativa. (Departamento de Educación de PR, 2015b, p.1). El currículo de matemáticas aspira a que el estudiante “desarrolle las destrezas de solución de problemas, investigación, comunicación y trabajo cooperativo que le permitan convertirse en un ciudadano útil y productivo en la sociedad” (Departamento de Educación de Puerto Rico, 2013, p.3). Esto implica que las tareas de enseñanza de matemáticas deben proveer para que el estudiante aprenda acerca de otras disciplinas, a colaborar y a comunicar. Implica además, que el estudiante aprenda a transferir el proceso de resolución de problemas matemáticos a la resolución de problemas de su entorno, pueblo o país.

La reforma de los estándares promueve el aprendizaje de todos los estudiantes. El salón tiene que atender a la diversidad del estudiantado. El DEPR promueve un currículo de matemáticas que “reduzca las barreras de aprendizaje y proporcione apoyo para alcanzar las necesidades individuales de todos los aprendices” (Departamento de Educación de Puerto Rico, 2013, p. 6). Se desprende de estas afirmaciones, que la transformación, requiere que en la planificación de las tareas de enseñanza se considere la diferenciación del contenido, los procesos y productos del aprendizaje a tono con el perfil, la aptitud y el interés del estudiante. Los conocimientos de instrucción diferenciada a través de MSP han iniciado instancias de cambio en esa dirección según evidenciado en los hallazgos de las entrevistas de las maestras M1 y M4. No se detectaron en las demás estrategias de recolección de datos. Se percibe que es un área donde está despegando la evolución.
Otra área donde se ha comenzado la evolución es en la reflexión para el mejoramiento de la enseñanza. Los conocimientos de investigación en acción tienen injerencia al respeto. Según Pennington (1995) el cambio duradero en la práctica involucra dos procesos: innovación y reflexión crítica. Todas las maestras durante su participación en el programa pasaron por ambos procesos al diseñar e implantar la propuesta de investigación. Continúa diciendo Pennington, que ese cambio se da en un ciclo donde hay innovación y ajuste de acuerdo a las circunstancias. El cambio duradero del maestro donde hay un ciclo de reflexión e innovación es el reflejo de la transformación de la práctica. Los datos revisados en esta investigación certifican que se ha comenzado ese proceso de reflexión para el mejoramiento. Lograr adueñarse de esos conocimientos requiere que el maestro por propia iniciativa continúe desarrollando la investigación en acción para el mejoramiento de la práctica y el aprendizaje de los estudiantes. Los datos reflejaron que los maestros han diseñado la propuesta en respuesta a su participación en el programa. Los datos no identificaron investigaciones adicionales que evidencien que se han adueñado del proceso.

Lograr la transformación requiere que las maestras se adueñen de los conocimientos obtenidos en MSP. Se adueñan de los mismos en la medida en que los transfieran en la planificación y diseño de tareas para el desarrollo de altos niveles de cognición. Se adueñan, en cuanto construyan escenarios de aprendizaje para la exploración, la conjetura, la investigación, el razonamiento matemático y la integración de los conocimientos. Esa transformación se aprecia en el atrevimiento a reinventarse, en la creación de actividades curriculares, en el desarrollo de tareas de avalúo, más allá de lo que provee MSP. De igual forma, cuando los conocimientos e instancias de transformación logradas de su participación en MSP le permitan apropiarse de nuevas formas para instruirse por sí mismos.
Esa trasformación debe generar un impacto en el aprendizaje del estudiante. El mismo se ejemplariza cuando el estudiante domina los contenidos que enseña el maestro y obtiene resultados proficientes en las pruebas que administra el Departamento de Educación. Se ejemplariza cuando las voces de los padres manifiestan altos índice de satisfacción con la educación que reciben sus hijos. De igual forma, cuando bajan los niveles de deserción escolar.

Lograr una verdadera transformación del maestro como profesional de la enseñanza es la meta del desarrollo profesional. El programa MSP ha encaminado dicha meta. Les corresponde a las educadoras apropiarse de todo el cúmulo de conocimientos ganado en el viaje educativo por MSP, y reflejarlo en cada una de las acciones que ejecutan día a día en pos del éxito académico de sus estudiantes.

Implicaciones para el desarrollo profesional

El reto al cual se enfrentan los proveedores de programas de desarrollo profesional es crear diseños que verdaderamente apoyen al maestro en la sala de clases, capten el interés y logren que se transfieran los conocimientos a las prácticas de enseñanza. En el caso de MSP la participación fue voluntaria. Aquellos programas donde la participación es compulsoria se enfrentan a un reto mayor. La característica de larga duración favoreció el establecimiento de vínculos con las prácticas de enseñanza, uno de los elementos del contexto que impactó en forma significativa la participación de las maestras. Ese vínculo se fortaleció cuando los facilitadores flexibilizaron las actividades a petición de los maestros, de tal forma que mucho de los temas discutidos en los talleres estuvieron a la par con las actividades diseñadas según el calendario de los mapas curriculares. El aspecto de participación colectiva fue otro elemento de impacto en el programa MSP.
Sin embargo, todavía hay necesidad de apoyo al maestro en el contexto escolar en el que trabaja. La presencia de apoyo durante la enseñanza de matemáticas fomenta la adopción de prácticas basadas en la reforma de los estándares (Henningsen & Stein, 1997). Muchos recursos del programa MSP se utilizaron en las actividades de capacitación a través de la estructura de talleres y conferencias en un contexto externo a la escuela. Lo fue menos, durante la implantación, y lo más importante a la larga es que los conocimientos se observen en la práctica. Implica esto que los programas tienen que evaluar la forma en que hacen la distribución de los fondos para atender con mayor profundidad la implantación en la sala de clases.

La responsabilidad para el éxito de la reforma de los estándares de matemáticas recae en el maestro (NCTM, 2001). Esa responsabilidad incluye proveer enseñanza con énfasis en la solución de problemas, el razonamiento, la comunicación y discurso alrededor de los conceptos de matemáticas; conexiones a través del contenido y otras áreas; aumento en la integración de la tecnología, trabajo de grupo y manipulativos; y un contenido más riguroso en el nivel elemental (Senger, 1999). Es imprescindible, entonces que en el diseño de las actividades se enfoquen los esfuerzos en el desarrollo cognitivo del maestro y en la planificación de actividades para el desarrollo cognitivo del estudiante. Se debe contemplar durante el desarrollo de talleres el modelaje de cómo se abordan las discusiones para la construcción de los conceptos y cómo se seleccionan tareas rigurosas para el desarrollo profundo del pensamiento. Durante las actividades de capacitación los instructores deben promover que el maestro desarrolle la práctica para crear ambientes de aprendizaje que promuevan discusiones donde se perfeccionen las destrezas de pensamiento y razonamiento matemático de los estudiantes.
Implicaciones para el Departamento de Educación de Puerto Rico

Las dimensiones de larga duración y participación colectiva le dieron efectividad a MSP. Esto implica que deben fomentarse estas características en el diseño de los programas de capacitación. Los programas de desarrollo profesional donde participa toda una comunidad escolar, maestros de un mismo nivel o de una materia fomentan la característica de participación colectiva.

Entre las características del desarrollo profesional efectivo es que sea individualizado, esté basado en la escuela e incrusta prácticas de la vida cotidiana de los profesores (Nishimura, 2014). El desarrollo profesional que integra la realidad diaria que vive el maestro permite que se identifiquen, discutan y seleccionen estrategias para solucionar las necesidades identificadas en el núcleo escolar. Por lo tanto, es esencial que el Departamento de Educación promueva desarrollo profesional de larga duración con diferentes modalidades de desarrollo profesional para fortalecer las comunidades de aprendizaje en el núcleo escolar. Las escuelas no deben estar ofreciendo talleres o conferencias de temas aislados que no propendan al bienestar de toda la comunidad escolar. La capacitación debe tener un diseño coherente que responda a las necesidades, y planes de acción que dirigen los esfuerzos de la comunidad escolar para alcanzar las metas. Este es el mensaje que Desimone, (2011a), quiere hacer llegar en las siguientes expresiones:

El desarrollo profesional del maestro es criticado frecuentemente argumentando que las actividades están desconectadas unas de otras - en otras palabras, las actividades individuales no forman parte de un programa coherente para el desarrollo y aprendizaje del maestro. Una actividad de desarrollo profesional es más probable que sea efectiva en
mejorar el conocimiento y destrezas del maestro si forma parte coherente con un conjunto amplio de oportunidades para el aprendizaje y desarrollo del maestro (p. 65).

Las escuelas deben fortalecer las comunidades de aprendizaje a través de capacitación que fortalezca la planificación a base de los estándares y expectativas, las estrategias de enseñanza, la instrucción diferenciada y la construcción del razonamiento. Es necesario, entonces, preparar un plan de desarrollo profesional de larga duración, sostenido, que parte de las necesidades de todos y que todos hayan participado en el diseño del mismo. La colección y análisis de datos del quehacer diario en las escuelas es crítica para el diseño y desarrollo de la capacitación profesional (Cochran-Smith & Lytle, 2009).

Hay que lograr que el maestro prosiga implantando en la marcha los conocimientos obtenidos en las actividades durante el desarrollo del plan de capacitación. Las inquietudes o limitaciones que se van identificando en esa implantación tienen que ser temas de discusión en las actividades siguientes de capacitación. Esto se puede lograr en la medida en que el plan de capacitación en el diseño sea vinculado a la realidad que vive el maestro. (Desimone 2011a) sostiene ese argumento:

En vez de proveer una serie de talleres de temas variados que los maestros seleccionan, los líderes educativos pueden diseñar actividades que se construyan unas sobre otras y provean oportunidades para el aprendizaje que estén adaptadas a las necesidades individuales de los maestros (p. 65).

El elemento vinculado a la experiencia diaria del maestro debe prevalecer como requisito indispensable para ofrecer desarrollo profesional. Esta es una de las razones por la cual el programa de desarrollo profesional debe ser personalizado y único para cada escuela. El DEPR en adición al plan de desarrollo profesional que se presenta para la escuela debe solicitar un plan
de modificación flexible basado en las necesidades de la práctica del maestro. El diseñador de las actividades de aprendizaje para la escuela debe establecer un mecanismo de comunicación con los maestros participantes para que las inquietudes y necesidades identificadas mientres se van implantando en la marcha los nuevos conocimientos sean temas de discusión en las próximas actividades de desarrollo profesional. Ese mecanismo de comunicación puede incluir foros en la Internet, correos electrónicos, buzón de sugerencias, entre otros. Además, si como parte del modelo de capacitación se incluye asesoría, las recomendaciones y necesidades identificadas por el asesor pueden formar parte de las actividades de seguimiento de capacitación.

La capacitación profesional de maestros del mismo nivel y materia es indispensable en un buen plan de desarrollo profesional para los maestros del país. Esos planes pueden ser liderados por los distritos o regiones educativas. El DEPR tiene los facilitadores por materia que pueden ser los gestores de los programas de capacitación para maestros de la misma materia y mismo nivel. El DEPR tiene que asignar fondos a los distritos para darles la encomienda. De la misma forma que en los planes de capacitación de las escuelas, deben existir un plan de modificación y los mecanismos disponibles para integrar las necesidades que se identifiquen en la marcha mientras el maestro va implantando los nuevos conocimientos.

El desarrollo profesional del maestro de escuela elemental debe incluir experiencias de aprendizaje de reto con oportunidades de diseñar materiales utilizando el modelo de Understanding By Design. La coherencia con la realidad que vive el maestro es primordial si se quiere lograr el mejoramiento del aprendizaje del estudiante. Esto implica reforzar las agendas de los talleres que tratan del conocimiento pedagógico, con la inclusión de actividades para el diseño de calendarios de unidad de los mapas curriculares, el diseño de avalúos que correspondan a las tareas de desempeños y avalúo para la formación del aprendizaje.
El enfoque de la enseñanza de matemáticas es centrada en el estudiante. Se caracteriza por promover el desarrollo conceptual, la inclusión de situaciones del diario vivir y el involucramiento activo de los estudiantes en su aprendizaje. Se promueven estrategias que fomentan la construcción del aprendizaje. Esto implica que los programas de desarrollo profesional deben diseñar actividades para influenciar las creencias de aquellos maestros que están orientados a la transmisión de la enseñanza.

Implicaciones para la investigación

Los hallazgos en esta investigación tienen implicaciones para futuros estudios en el campo de la educación del maestro. Un certificado como maestro no le provee todas las herramientas a un maestro para enfrentarse a la diversidad de retos que encuentra en la sala de clases día a día. El desarrollo profesional es el mecanismo por excelencia de los sistemas educativos para adaptarse y adoptar los cambios a consecuencia de los nuevos conocimientos, los adelantos tecnológicos y nuevos descubrimientos. Las investigaciones en el área de desarrollo profesional del maestro deben promover alianzas entre el DEPR y las universidades del país. Los proyectos de desarrollo profesional pueden ser espacios de investigación en las universidades cuyos resultados sean útiles en el diseño de los programas de preparación del maestro. De esta forma se da un beneficio mutuo: se amplía los espacios de investigación en las universidades para mejorar sus programas y el DEPR tiene información valiosa para evaluar y desarrollar nuevos proyectos de desarrollo profesional que respondan a la realidad social del momento en que se vive.

Los hallazgos en esta investigación reflejaron que el maestro está en continua evolución en búsqueda de transformar la sala de clases. En uno de los hallazgos, basado en la percepción de las maestras, se interpretó que un impacto de la participación en el programa de desarrollo
profesional había sido lograr un mayor involucramiento del estudiante en el desarrollo de la clase. No así, que la participación de las maestras en el programa de desarrollo profesional haya mejorado el aprovechamiento académico de los estudiantes. Esto implica que debe investigarse más sobre la relación del aprendizaje del maestro en el desarrollo profesional y las transferencias a la sala de clases. Este tipo de investigación puede considerar dos perspectivas: elementos del desarrollo profesional que favorecen la transferencia y cómo el proceso de aprendizaje del maestro repercute en una verdadera transformación de este como profesional de la enseñanza.

“El campo de la investigación sobre el aprendizaje del maestro es relativamente joven” (Borko, 2004, p. 3). Según Borko (2004), estamos comenzando a generar conocimiento acerca de lo que el maestro aprende en el desarrollo profesional y la forma en que se da ese aprendizaje. De igual forma, los investigadores están comenzado a interesarse y a realizar estudios acerca de la relación del impacto del cambio del maestro en los resultados de aprendizaje del estudiante (Borko, 2004). Debe promoverse investigación que examine esta relación. Las investigaciones además de enfocar en la evaluación de las prácticas del maestro y las medidas de los resultados en las pruebas, deben enfocar en las formas en que puede medirse al aprovechamiento académico de los estudiantes como resultado directo de las experiencias de aprendizaje de los maestros.

El desarrollo profesional en la modalidad de apoyo del maestro en sus prácticas educativas ayuda a que el maestro pueda examinar su propio desempeño en la enseñanza. Además, puede ayudarle a aumentar su desarrollo cognitivo y a poner en práctica nuevos conocimientos una vez aprendidos del experto. Lo antes expuesto implica que las investigaciones deben enfocar las mejores formas de ayudar al maestro a desarrollar conocimiento y a mejorar sus destrezas cognitivas.
Recomendaciones para programas de desarrollo profesional

La capacitación del maestro debe responder a las metas que haya establecido el DEPR. En estos momentos el currículo está constituido por unidades de mapas curriculares y el modelo de panificación *Understanding by Design*. El diseño debe contemplar la alineación de estos documentos con el contenido y pedagogía de la materia. Estos documentos promueven una enseñanza integrada y de construcción del conocimiento. Las estrategias de enseñanza que promuevan la investigación, la integración de las disciplinas, el desarrollo del razonamiento, la toma de decisiones y la creatividad no deben estar aisladas en los diseños de los talleres que enfocan el contenido de la materia.

Las comunidades de educadores mundiales promueven el discurso de la educación inclusiva a través del modelo del Diseño Universal para el Aprendizaje. El Departamento de Educación de Puerto Rico promueve la instrucción diferenciada en todas las materias y salones de clases. Los diseños de desarrollo profesional con enfoque en contenido deben identificar y modelar actividades diferenciadas para atender las necesidades de todos los estudiantes. El maestro debe adquirir conocimiento de cómo diferenciar el contenido para atender en forma correcta al estudiante de educación especial, al que tiene problemas con el idioma, al que tiene problema de lectura, al dotado y a todos los demás.

Una vez terminan las actividades que en el programa se diseñan para el maestro, este se queda solo implantando en la sala de clases los nuevos conocimientos. El coaching una vez finalizado los talleres beneficia el aprendizaje sostenido del maestro. Los diseñadores deben inventar formas de integrar a otros miembros de la comunidad escolar, como los facilitadores, superintendentes y directores para que supervisen y apoyen en las necesidades que este identifique en el proceso de implantación.
Recomendaciones para futuras investigaciones

El currículo basado en estándares requiere un dominio profundo del contenido de la materia, de cómo enseñarla, y de altas destrezas cognitivas del maestro. Hay necesidad de identificar enfoques de desarrollo profesional que apoderen al maestro de estos conocimientos y destrezas. Deben dirigirse investigaciones con diseños de estudios de caso que examinen los conocimientos y prácticas de los instructores que son efectivas para el aprendizaje del maestro y la transferencia a la sala de clases.

Lawless y Pellegrino (2007) consideran que hay diferencias en torno a la participación voluntaria y no voluntaria de los maestros en programas de desarrollo profesional. Según los autores, estos maestros difieren en cuanto a motivación para aprender, el compromiso con el cambio y la voluntad para tomar riesgos. Deben promoverse investigaciones que examinen las necesidades de participantes voluntarios y no voluntarios, de tal forma que los hallazgos sean útiles en los diseños de programas de desarrollo profesional.

En esta investigación participaron maestras que enseñan matemáticas en el nivel elemental. Son maestras preparadas en educación general que aceptan que necesitan mejorar su conocimiento de la materia. Surge de la investigación que tienen unas características que las predisponen al cambio. Esas características favorecieron el desarrollo del programa. Deben considerarse investigaciones relacionadas a estas, pero con maestros certificados en la materia de matemáticas. Los hallazgos darán luz en cuanto a consideraciones para diseñar programas de desarrollo profesional dirigidos a maestros expertos en la materia versus los que no lo son.

El liderazgo instruccional promueve el cambio del maestro. Sin embargo, en esta investigación la participación fue instrumental. Hay factores internos y externos que interactúan a favor o no de la participación del director en el proceso de cambio. Se recomiendan estudios
con diferentes diseños que estudien la relación liderazgo instruccional y cambio del maestro. Los hallazgos fortalecerán el diseño de programas de desarrollo profesional para fortalecer el liderazgo instruccional que favorezca la implantación de los nuevos aprendizajes en las prácticas de enseñanza.

Los estándares y expectativas de contenido establecen metas rigurosas para el aprendizaje de los estudiantes. Lograr estas metas, requiere del maestro un dominio amplio del contenido y altos niveles de cognición. A través de las discusiones de clases, la construcción de tareas de enseñanza y avalúo rigurosas el maestro va fomentando los niveles de profundidad del conocimiento. Es necesario entonces, que se diseñen investigaciones cuyos resultados den luz acerca de cómo ayudar a los maestros a desarrollar comunidades de discusión y construir tareas de enseñanza y avalúo para el desarrollo del razonamiento del estudiante.

Recomendaciones a los directores de escuela

Según Guskey (2000), se ha reconocido el poder del desarrollo profesional informal que consiste en planificación conjunta entre maestros, críticas al trabajo del estudiante y el estudio del currículo y materiales. En estos momentos en que los maestros se enfrentan a la construcción de calendarios de unidades curriculares para trabajar los mapas curriculares, la gestión del director debe ser transformadora en producir espacios en su escuela para el desarrollo profesional. El director de escuela que promueve una cultura de aprendizaje del maestro, comienza a delinear la forma en que se dará ese aprendizaje desde que comienza a organizar el año escolar. El diseño de organizaciones escolares deben facilitar las reuniones de maestros del mismo nivel y materia, de tal forma que puedan estructurarse espacios de reflexión y desarrollo profesional que fomenten la participación colectiva.
En la investigación de Clarle (1997) una de las maestras expresó que la oportunidad de trabajar en forma colaborativa en grupos de cuatro maestros, cuando planificaban la enseñanza de actividades particulares o de la unidad curricular fue la estrategia que más le ayudó a entender importantes ideas matemáticas. Por tal razón, se recomienda a los directores que promuevan la formación de grupos de colaboración en sus escuelas para reflexionar sobre la práctica, planificar y estudiar los documentos curriculares de sus materias. El director como líder de la enseñanza debe participar de los mismos.

Los directores son los agentes que promueven el cambio en sus escuelas. En los hallazgos de esta investigación se apreció que las participantes están receptivas a compartir su aprendizaje con los demás maestros de la escuela. Muchas veces se utiliza mucho presupuesto para contratar recursos externos que provean el desarrollo profesional sin descubrir que los mejores recursos están en la misma escuela. Es una alternativa con la que cuentan los directores para capacitar a otros maestros en los asuntos que competen a la enseñanza de los currículos. En esta investigación alguno de los participantes compartieron sus conocimientos con otros maestros de su núcleo escolar, pero partiendo de sus propias iniciativas. No debe darse ese espacio únicamente como iniciativa del maestro que participa del taller, sino como algo planificado y estructurado por el director porque considera que es bueno y es otro mecanismo que tiene a su disposición para apoderar a la facultad de nuevos conocimientos.

El acceso a materiales educativos fue algo que atesoraron las maestras participantes. Algunos alegaron que es una de las razones por las que participan de MSP. Continuar implantando los nuevos conocimientos requiere la mayoría de las veces que se tengan los materiales y equipos apropiados. Los directores de escuelas deben facilitar el acceso a los materiales que necesiten los maestros.
Recomendaciones para el Departamento de Educación

El DEPR es el custodio de los fondos que se asignan para el desarrollo profesional. Tiene una gran responsabilidad en apoyar iniciativas que verdaderamente generen logros para el aprendizaje del maestro. A veces hay ausencia de entendimiento en cuanto a la efectividad de estos programas debido a los enfoques y acercamientos que se utilizan para evaluarlos (Lawless & Pellegrino, 2007). Muchos enfoques se limitan a medidas de satisfacción o a cómo el maestro reacciona a la actividad. Esas evaluaciones no dan suficiente información para determinar el impacto en los conocimientos de contenido y pedagógicos adquiridos por el maestro y la forma en que los mismos están afectando su práctica. Por tal razón, es imprescindible que se lleven a cabo evaluaciones más profundas y elaboradas que verdaderamente proyecten el impacto que esa capacitación tuvo en los maestros, en sus prácticas de enseñanza y en el aprendizaje del estudiante. Esas evaluaciones profundas van a identificar aquellas iniciativas y modelos efectivos que verdaderamente generan cambio del maestro y en las cuales vale la pena invertir los recursos financieros. Esas evaluaciones deben ser realizadas por recursos externos al Programa de desarrollo profesional y al DEPR, y que recojan datos tanto del diseño, implantación y de su impacto en la sala de clases una vez el maestro haya finalizado la participación en el programa.

El apoyo al maestro durante la implantación de los conocimientos fortalece que se identifiquen y atiendan necesidades en el proceso. El facilitador del distrito es el experto en la materia. De alguna manera debe establecer comunicación con los diseñadores del proyecto y el maestro para que tenga información adecuada a mano que pueda utilizar para dar seguimiento en la sala de clases. La integración del facilitador del distrito en el proceso de capacitación de los maestros debe fomentar la colaboración para facilitar la transferencia a la sala de clases una vez termina la participación del maestro en el programa de desarrollo profesional.
REFERENCIAS

Althauser, K. L. (2010). The effects of a sustained, job-embedded professional development on elementary teachers’ math teaching self-efficacy and resulting effects on their students’ achievement. (Tesis Doctoral). De la base de datos ProQuest Dissertations & Theses. (UMI No. 3453524)

Álvarez, Martes, S. (2013). Las creencias epistemológicas y didácticas de los maestros de matemáticas de escuela intermedia y su efecto en la implementación del currículo de matemáticas basado en estándares de contenido y expectativas de grado del Departamento de Educación de Puerto Rico. (Tesis Doctoral). De la base de datos Proquest Dissertations & Theses. (UMI 3552988)

Departamento de Educación de Puerto Rico (2014e). *Todos Presentes: en ruta a la construcción de un nuevo paradigma de éxito para la educación del país. Puerto Rico Core Standards”.* *Descripción general del desarrollo de los nuevos estándares: Proceso de revisión curricular.* Recuperado de http://intraedu.dde.pr/encuentroacademico/ESTANDARES%20DE%20CONTENIDO%20Y%20EXPECTATIVAS%20DE%20GRADO%202014%20-%20MATEMATICAS.pdf?Mobile=1&Source=%2F_layouts%2Fmobile%2Fview.aspx%3FL%3D18b677b-70b0-4c78-826a-1f8f5e813885%26View%3D2c5157f0-35a4-4ca5-98a3-be6797f5aef9%26CurrentPage%3D1

Departamento de Educación de Puerto Rico (2014h). *Mapas curriculares.* Recuperado de http://intraedu.dde.pr/Materiales%20Curriculares/Forms/AllItems.aspx?RootFolder=%2F Materiales%20Curriculares%2FMatem%C3%A1ticas%202014&FolderCTID=0x01200FD4344A3AA05134AA793F1EFE40EB099&View={20BE0ADC-980C-4B35-8826-DB6381045F03}

http://content.ebscohost.com/pdf13_15/pdf/2003/PDK/01Jun03/9928659.pdf?T=P&P=AN&K=9928659&S=R&D=a9h&EbscoContent=dGJyMMvL7ESeqLc4v%2BbwOLCmr0u ep7dSs6q4TK6WxWXS&ContentCustomer=dGJyMPGqtlC3r7dKuePfgeyx43zx

Schaefer, N. E. (2004). *The process of teacher change: A longitudinal of four middle school mathematics teachers’ experiences during and after a two-year professional development program.* (Tesis Doctoral). De la base de datos de ProQuest Dissertations & Theses (UMI No. 3141668)

Recuperado de http://ehis.ebscohost.com.librarylogin-um.suagm.edu:86/ehost/detail?vid=8&sid=e8d2223d-4fad-49c8-b39c88b2a0b08fc5%40sessionmgr10&hid=3&bdata=JnNpdGU9ZWhvc3QtbgI2ZQ%3d%3d#db=eft&AN=503367219

Universidad Interamericana (2008). *Bachillerato en artes en educación para la niñez temprana (4-6)*. Recuperado de http://www.metro.inter.edu/secuencial/Ninez%20Tempra%204to%206%202008.pdf

Universidad Metropolitana (2010). *Secuencial curricular del bachillerato en educación: Educación elemental 4-6.*

search_Note_on_Research_Methods.pdf

af3d-d7415473536e%40sessionmgr10&hid=16

LISTA DE APÉNDICES
Apéndice A

Relación de los objetivos, preguntas de investigación y las estrategias de recolección de datos

<table>
<thead>
<tr>
<th>Objetivos</th>
<th>Preguntas de Investigación</th>
<th>Estrategias</th>
<th>¿A quién va dirigido?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explorar las experiencias de un grupo de maestros de cuarto al sexto grado luego de participar de un programa de capacitación profesional.</td>
<td>¿Cuáles fueron las experiencias de un grupo de maestros que participaron de un programa de capacitación profesional?</td>
<td>Entrevistas Cotejo Documentos de MSP</td>
<td>Maestros</td>
</tr>
<tr>
<td>Explorar aquellas características de un programa de desarrollo profesional que promueven el mejoramiento de la enseñanza de matemáticas en el nivel de cuarto al sexto grado.</td>
<td>¿Cómo el andamiaje del MSP provee para el conocimiento del contenido matemático para la enseñanza? ¿Cuáles fueron las experiencias de un grupo de maestros que participaron de un programa de capacitación profesional?</td>
<td>Entrevistas Cotejo Documentos de MSP</td>
<td>Maestros</td>
</tr>
<tr>
<td>Describir la manera en que el maestro demuestra que se apodera de los conocimientos adquiridos en el programa de capacitación profesional.</td>
<td>¿Cómo el maestro demuestra que se apodera de los nuevos conocimientos para la enseñanza de las matemáticas al participar del programa de capacitación profesional?</td>
<td>Entrevistas Respuesta Escrita Inmediata Notas de reflexión</td>
<td>Maestros</td>
</tr>
<tr>
<td>Describir las formas en que los maestros del nivel de cuarto al sexto vinculan sus prácticas de enseñanza con los conocimientos adquiridos en el programa de capacitación profesional.</td>
<td>¿En qué forma las prácticas de enseñanza de los maestros están alineadas a los conocimientos adquiridos en el programa de desarrollo profesional?</td>
<td>Entrevistas Respuesta Escrita Inmediata Notas de reflexión</td>
<td>Maestros</td>
</tr>
<tr>
<td>Describir la manera en que el maestro entiende que su gestión ha impactado el mejoramiento académico del estudiante.</td>
<td>¿Cómo la gestión del maestro ha impactado el mejoramiento académico del estudiante?</td>
<td>Entrevista Notas de Reflexión Respuesta Escrita Inmediata</td>
<td>Maestros</td>
</tr>
</tbody>
</table>
Apéndice B

Protocolo y guías de preguntas para la entrevista semiestructurada a maestros
3. Se procederá a leer y a explicar cada oración de la Hoja de Consentimiento que contiene el propósito del estudio, los riesgos mínimos, beneficios, privacidad y confidencialidad.

4. La entrevista tendrá una duración aproximada de una hora. Se usará una grabadora digital. Las grabaciones se transcribirán inmediatamente y se le proporcionará al participante para que sean verificadas y certificadas antes del proceso del análisis de los mismos.

5. Las transcripciones serán grabadas en un dispositivo electrónico, el cual será almacenado en un lugar seguro y custodiado en la residencia principal por la investigadora.

6. Luego de conocer los riesgos y beneficios de participar en la investigación se espera que el participante, libre y voluntariamente, consista en participar en el proceso de entrevista y firme la Hoja de Consentimiento. Antes de firmar el consentimiento informado, los investigadores correrían para que el participante entienda el procedimiento al realizando las siguientes preguntas: ¿Tiene alguna duda sobre el consentimiento, que desee le vuelva a explicar? ¿Entiende en qué consiste la investigación?

7. Podría resumir en algunas palabras lo que hemos discutido?

¡De sentirlo necesario el participante puede abordar el proceso de entrevista sin que se perjudique su trabajo o estudios!
8. La investigadora tendrá como rol: orientar a los participantes sobre sus derechos y deberes, tomar medidas para garantizar la confidencialidad y privacidad de los participantes y llevar a cabo las entrevistas, y el análisis e interpretación de los hallazgos manteniendo en todo momento una responsabilidad ética.

9. Finalmente se agradecerá al participante por el tiempo dedicado al proceso.

Preguntas para crear el perfil del participante

Años de Experiencia como maestro de matemáticas_________ Año en que participó del Programa _______

Grados en los que enseña matemáticas____________________________

Preparación académica__

Planteamiento del Problema: ¿Cuál es el proceso por el cual el maestro internaliza los nuevos aprendizajes relacionados con el contenido y la pedagogía de las matemáticas al participar de un programa de desarrollo profesional?

Código del Maestro__________________
<table>
<thead>
<tr>
<th>Número</th>
<th>Preguntas</th>
<th>1. ¿Cómo describe un grupo de maestros sus experiencias de formación al participar de un programa de capacitación profesional?</th>
<th>2. ¿Cómo el andamiaje del programa MSP provee para la adquisición del contenido matemático en el maestro participante y para la transmisión de los procesos de enseñanza?</th>
<th>3. ¿Cómo el maestro demuestra que se apodera de los nuevos conocimientos para la enseñanza de las matemáticas al participar del programa de capacitación profesional?</th>
<th>4. ¿En qué forma las prácticas de enseñanza de los maestros están alineadas a los conocimiento s adquiridos en el programa de desarrollo profesional?</th>
<th>5. ¿Cómo la gestión del maestro ha impactado el mejoramiento académico del estudiante?</th>
<th>Indicadores</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Explique el proceso que se llevó a cabo para su participación en el programa MSP, comenzando con el reclutamiento hasta su asistencia al primer taller.</td>
<td>☒</td>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td>- Contenido de la solicitud</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Motivación externa o interna</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Participación del maestro en el diseño</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Estudio de necesidades</td>
<td></td>
</tr>
<tr>
<td>Número</td>
<td>Preguntas</td>
<td>Relación de la pregunta de entrevista con la pregunta de investigación</td>
<td>Indicadores</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>---</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>¿Cómo describe un grupo de maestros sus experiencias de formación al participar de un programa de capacitación profesional?</td>
<td>1. ¿Cómo el maestro demuestra que se apodera de los nuevos conocimientos para la enseñanza de las matemáticas al participar del programa de capacitación profesional?</td>
<td>- Enseñanza recibida</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Cuénteme su historia en relación con las matemáticas, como estudiante y como maestro.</td>
<td>1. ¿Cómo el maestro demuestra que se apodera de los nuevos conocimientos para la enseñanza de las matemáticas al participar del programa de capacitación profesional?</td>
<td>- Predisposición</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Número</td>
<td>Preguntas</td>
<td>Indicadores</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>¿Cómo describe un grupo de maestros sus experiencias de formación al participar de un programa de capacitación profesional?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>¿Cómo el andamiaje del programa MSP provee para la adquisición del contenido matemático en el maestro participante y para la transmisión de los procesos de enseñanza?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>¿Cómo el maestro demuestra que se apodera de los nuevos conocimientos para la enseñanza de las matemáticas al participar del programa de capacitación profesional?</td>
<td>Después de MSP - Creencias - Cambio de maestro</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>¿En qué forma las prácticas de enseñanza de los maestros están alineadas a los conocimientos adquiridos en el programa de desarrollo profesional?</td>
<td>Durección, sostenido - Total de horas - Temas - Estrategias para desarrollar los talleres - Coaching</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>¿Cómo la gestión del maestro ha impactado el mejoramiento académico del estudiante?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Describa los componentes del programa de capacitación en el cual usted participó.

3 | x | x |
<table>
<thead>
<tr>
<th>Número</th>
<th>Preguntas</th>
<th>Indicadores</th>
</tr>
</thead>
</table>
| 1. | ¿Cómo describe un grupo de maestros sus experiencias de formación al participar de un programa de capacitación profesional? | - Reflexiones
- Reuniones
- Coherencia
- Retrocomunicación |
| 2. | ¿Cómo el andamiaje del programa MSP provee para la adquisición del contenido matemático en el maestro participante y para la transmisión de los procesos de enseñanza? | - Participación activa
- Trabajo en equipo
- Conferencia
- Demostraciones |
| 3. | ¿Cómo el maestro demuestra que se apodera de los nuevos conocimientos para la enseñanza de las matemáticas al participar del programa de capacitación profesional? | - |
| 4. | Describa una sección típica de los talleres. | - |
| | x | - |
| | x | - |

Ana G. Mendez
University System
Institutional Review Board (IRB)

Protocol No. 01-504-15
Approval Date March 26, 2015
Expiration Date March 23, 2016

Página 7 de 14
<table>
<thead>
<tr>
<th>Preguntas</th>
<th>Indicadores</th>
<th>Describa las características del programa de desarrollo profesional</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ¿Cómo se describe el grupo de maestros que participan del programa de capacitación en matemática?</td>
<td>Coherencia conceptos y procedimientos</td>
<td>- Coherencia conceptos y procedimientos</td>
</tr>
<tr>
<td>2. ¿Cómo el maestro demuestra que se aprende de los nuevos conocimientos para la enseñanza de las matemáticas?</td>
<td>Situaciones de vida real</td>
<td>- Situaciones de vida real</td>
</tr>
<tr>
<td>3. ¿Cómo el maestro demuestra que la gestión del mejoramiento académico del estudiante?</td>
<td>- Enfoque en conceptos y procedimientos</td>
<td>- Enfoque en conceptos y procedimientos</td>
</tr>
<tr>
<td>4. ¿En qué forma las prácticas de enseñanza de los maestros están alimentadas a los conocimientos adquiridos en el programa de desarrollo profesional?</td>
<td>- Contenido de matemáticas y contenido pedagógico</td>
<td>- Contenido de matemáticas y contenido pedagógico</td>
</tr>
<tr>
<td>5. ¿Cómo la gestión del mejoramiento académico del estudiante?</td>
<td>- Demonstrationes pedagógicas</td>
<td>- Demonstrationes pedagógicas</td>
</tr>
</tbody>
</table>

Número: 5
<table>
<thead>
<tr>
<th>Número</th>
<th>Preguntas</th>
<th>Relación de la pregunta de entrevista con la pregunta de investigación</th>
<th>Indicadores</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. ¿Cómo describe un grupo de maestros sus experiencias de formación al participar de un programa de capacitación profesional?</td>
<td>2. ¿Cómo el andamiaje del programa MSP provee para la adquisición del contenido matemático en el maestro participante y para la transmisión de los procesos de enseñanza?</td>
<td>-Planificar clases -Apoio en la implantación -Modelo de coaching -Preparación, disposición y dominio del coach</td>
</tr>
<tr>
<td></td>
<td>coaching recibido durante el desarrollo del programa o una vez finalizados los talleres.</td>
<td>3. ¿Cómo el maestro demuestra que se apoda de los nuevos conocimientos para la enseñanza de las matemáticas al participar del programa de capacitación profesional?</td>
<td>-Facilitadores -Comunidades de aprendizaje</td>
</tr>
<tr>
<td>6</td>
<td>Explique en qué forma los diferentes niveles del sistema educativo</td>
<td>4. ¿En qué forma las prácticas de enseñanza de los maestros están alineadas a los conocimiento s adquiridos en el programa de desarrollo profesional?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
<td>5. ¿Cómo la gestión del maestro ha impactado el mejoramiento académico del estudiante?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Número</td>
<td>Preguntas</td>
<td>Indicadores</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>¿Cómo describe un grupo de maestros sus experiencias de formación al participar de un programa de capacitación profesional?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>¿Cómo el andamiaje del programa MSP provee para la adquisición del contenido matemático en el maestro participante y para la transmisión de los procesos de enseñanza?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>¿Cómo el maestro demuestra que se apodera de los nuevos conocimientos para la enseñanza de las matemáticas al participar del programa de capacitación profesional?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>¿En qué forma las prácticas de enseñanza de los maestros están alineadas a los conocimiento s adquiridos en el programa de desarrollo profesional?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>¿Cómo la gestión del maestro ha impactado el mejoramiento académico del estudiante?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Dívulgación, y seguimiento

- Comunidades de aprendizaje
<table>
<thead>
<tr>
<th>Número</th>
<th>Preguntas</th>
<th>1. ¿Cómo describe un grupo de maestros sus experiencias de formación al participar de un programa de capacitación profesional?</th>
<th>2. ¿Cómo el andamiaje del programa MSP provee para la adquisición del contenido matemático en el maestro participante y para la transmisión de los procesos de enseñanza?</th>
<th>3. ¿Cómo el maestro demuestra que se apodera de los nuevos conocimientos para la enseñanza de las matemáticas al participar del programa de capacitación profesional?</th>
<th>4. ¿En qué forma las prácticas de enseñanza de los maestros están alineadas a los conocimientos adquiridos en el programa de desarrollo profesional?</th>
<th>5. ¿Cómo la gestión del maestro ha impactado el mejoramiento académico del estudiante?</th>
<th>Indicadores</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Describa los conocimientos (temas, estrategias de enseñanza) que usted adquirió en el MSP para la enseñanza de las matemáticas.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>-De contenido</td>
<td>-De la pedagogía de las matemáticas. -De las estrategias de enseñanza -Del aprendizaje de los estudiantes</td>
</tr>
<tr>
<td>Número</td>
<td>Preguntas</td>
<td>Indicadores</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Describa cómo el desarrollo profesional de la iniciativa MSP ha impactado su salón de clases.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Indicadores:
- Enseñanza de conceptos, procedimientos
- Representaciones
- Solución de problemas
- Altos niveles del pensamiento
- Tareas de enseñanza de alto nivel cognitivo
<table>
<thead>
<tr>
<th>Número</th>
<th>Preguntas</th>
<th>Indicadores</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>¿En qué forma evalúa al estudiante?</td>
<td>Variabilidad de evaluaciones</td>
</tr>
</tbody>
</table>
| 11 | ¿En qué forma, si alguna, usted cree que su participación en el MSP ha impactado su rol como maestro y el aprovechamiento académico de los estudiantes? ¿Cómo | -PPAA
-Comparación del aprovechamiento
-Identifica y explica situaciones específicas de estudiantes |
<table>
<thead>
<tr>
<th>Número</th>
<th>Preguntas</th>
<th>1. ¿Cómo describe un grupo de maestros sus experiencias de formación al participar de un programa de capacitación profesional?</th>
<th>2. ¿Cómo el andamiaje del programa MSP provee para la adquisición del contenido matemático en el maestro participante y para la transmisión de los procesos de enseñanza?</th>
<th>3. ¿Cómo el maestro demuestra que se apodera de los nuevos conocimientos para la enseñanza de las matemáticas al participar del programa de capacitación profesional?</th>
<th>4. ¿En qué forma las prácticas de enseñanza de los maestros están alineadas a los conocimientos adquiridos en el programa de desarrollo profesional?</th>
<th>5. ¿Cómo la gestión del maestro ha impactado el mejoramiento académico del estudiante?</th>
<th>Indicadores</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>usted ha determinado el impacto?</td>
<td>x</td>
<td>x</td>
<td></td>
<td>-Del andamiaje</td>
<td>-Del contenido</td>
<td>-Del coaching</td>
</tr>
<tr>
<td>13</td>
<td>¿Cuáles sugerencias o recomendaciones usted haría para mejorar esta iniciativa de MSP?</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>¿Hay algo más que quiera expresar?</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>
Apéndice C

Revisión de documentos: Programa MSP

<table>
<thead>
<tr>
<th>Áreas (según estén disponibles en el documento)</th>
<th>Hallazgos</th>
<th>Observaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descripción del documento</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meta(s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objetivos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actividades programadas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actividades desarrolladas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actividades de evaluación del Programa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluaciones realizadas por los participantes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logros del programa</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Investigación: Estudio de caso de la capacitación profesional del maestro de matemáticas del nivel cuarto al sexto grado

Investigadora: Ana M. Pérez Rivera

Institución: Universidad Metropolitana
Escuela de Educación
Apéndice D

Instrumento Respuesta Escrita Inmediata

Investigación: Estudio de caso de la capacitación profesional del maestro de matemáticas del nivel cuarto al sexto grado

Investigadora: Ana M. Pérez Rivera

Institución: Universidad Metropolitana

Escuela de Educación

Instrumento Respuesta Escrita Inmediata

Código del Maestro: ___________ Grado: _____ Código de la Escuela: ___________

Fecha: ___________ Nombre de la Investigadora: __________________________

Selezione un tema específico de matemática del grado que usted enseña. Identifique el tema y el (los) objetivos. Describa paso a paso las tareas de aprendizaje que implantará para desarrollar la comprensión del concepto, el desarrollo del procedimiento y el razonamiento matemático. Luego describa la(s) tareas de avalúo. Al diseñar las tareas tome en consideración y describa las estrategias de enseñanza, las representaciones visuales (si considera alguna), los materiales de enseñanza, y ejemplos de los problemas de matemáticas que utilizará durante el proceso de enseñanza y aprendizaje, y durante el avalúo.

Tema:

Objetivo(s):

Tareas de aprendizaje para el desarrollo de la comprensión del concepto:

[Signature]

Página 1 de 3
Investigación: Estudio de caso de la capacitación profesional del maestro de matemáticas del nivel cuarto al sexto grado

Investigadora: Ana M. Pérez Rivera
Institución: Universidad Metropolitana
Escuela de Educación

Instrumento Respuesta Escrita Inmediata

Tareas de aprendizaje para el desarrollo del procedimiento:

Ana G. Mendez University System
Institutional Review Board (IRB)
Protocol No. 01-504-15
Approval Date March 24, 2015
Expiration Date March 23, 2016
Investigación: Estudio de caso de la capacitación profesional del maestro de matemáticas del nivel cuarto al sexto grado

Investigadora: Ana M. Pérez Rivera
Institución: Universidad Metropolitana
Escuela de Educación

Instrumento Respuesta Escrita Inmediata

Tareas de aprendizaje para el razonamiento matemático:

Tareas de evaluación:
Apéndice E
Notas de reflexión del maestro de matemáticas

Investigación: Estudio de caso de la capacitación profesional del maestro de matemáticas del nivel cuarto al sexto grado

Investigadora: Ana M. Pérez Rivera
Institución: Universidad Metropolitana
Escuela de Educación

Notas de Reflexión del Maestro de Matemáticas

Código del maestro: __________ Código de la Escuela _______ Grado: ______
Fecha de la reflexión: __________ Nombre del Investigador: __________

Tema de la clase: ____________
Objetivo de la clase: ____________

Instrucciones:
Seleccione dos clases y haga una reflexión por cada una (total de 2) utilizando las frases guías que se le proveen. En la primera frase debe enfocar su reflexión en las actividades que llevó a cabo para explicar el tema. En la segunda frase debe enfatizar en el trabajo que hicieron los estudiantes en el salón de clases en términos de su participación, motivación y dominio del tema. En la tercera frase debe enfatizar en las acciones que como maestra llevó a cabo y no cambiaría y en aquellas que sí cambiaría.

Primera Frase Guía: Durante la enseñanza de este tema utilicé...........
Investigación: Estudio de caso de la capacitación profesional del maestro de matemáticas del nivel cuarto al sexto grado

Investigadora: Ana M. Pérez Rivera
Institución: Universidad Metropolitana
Escuela de Educación

Notas de Reflexión del Maestro de Matemáticas

Segunda Frase guía: Durante la lección de clases los estudiantes……..

Tercera Frase Guía: Al finalizar la clase quedé muy satisfecho (a) con
sin embargo en una próxima ocasión......................

Ana G. Mendez University System
Institutional Review Board (IRB)

Protocol No. 06-504-15
Approval Date March 24, 2015
Expiration Date March 25, 2016
Apéndice F
Invitación a participar de la investigación

Invitación a participar de la Investigación

"ESTUDIO DE CASO DE LA CAPACITACIÓN PROFESIONAL DEL MAESTRO DE MATEMÁTICAS DEL NIVEL CUARTO AL SEXTO GRADO"

Propósito de la investigación
Explorar, describir y entender las experiencias para desarrollar conocimiento del contenido para la enseñanza de las matemáticas de por lo menos seis maestros del nivel de cuarto al sexto grado, luego de haber participado de una iniciativa de capacitación profesional del programa MSP.

REQUISITOS
- Haber participado del Programa de desarrollo profesional Mathematics and Science Partnership de la Universidad Metropolitana
- Enseñar matemáticas en el nivel de cuarto al sexto grado
- Interesado (a) en participar libre y voluntariamente

Para mayor información favor de comunicarse con Ana M. Pérez Rivera, estudiante doctoral de la Escuela de Educación de la Universidad Metropolitana en Cupey al teléfono 787-315-6355 o correo electrónico perezriveraana@hotmail.com

Ana G. Mendez University System
Institutional Review Board (IRB)

Protocol No. 01-504-15
Approval Date March 26, 2015
Expiration Date March 25, 2016
<table>
<thead>
<tr>
<th>Participante</th>
<th>Años de Experiencia</th>
<th>Preparación académica</th>
<th>Cursos que ofrece y Grado</th>
<th>Experiencia enseñando matemáticas</th>
<th>Código Escuela donde enseña</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Apéndice H
Protocolo para establecer diálogo con los interesados en la investigación (Screening)…

Investigadora: Ana M. Pérez Rivera
Institución: Universidad Metropolitana
Escuela de Educación

Protocolo para Establecer el Diálogo con los Interesados en la investigación (Screening)

Diálogo Inicial: Para establecer diálogo hasta un máximo de 100 candidatos interesados en participar en la investigación
1. Se le agradecerá por su interés en participar en el estudio
2. Se le informará el propósito del estudio y los procedimientos de recolección de datos.
3. Se le enfatizará que su participación es voluntaria y que se seguirán los requerimientos de la Oficina de Cumplimiento para salvaguardar la confidencialidad, privacidad y disposición de los documentos una vez cumplidos los cinco años de terminada la investigación.
4. Se le preguntará sobre sus años de experiencia y los grados donde enseña matemáticas
5. Se le solicitará su número de teléfono y correo electrónico
6. Se le informará si es un potencial candidato, que la investigadora se comunicará nuevamente para informarle si fue o no seleccionado para participar en el estudio. De no ser seleccionado en los seis candidatos, su nombre se mantendrá en la lista por si luego surge la necesidad de reclutarlo.

Diálogo Subsiguiente: Para establecer comunicación con los seis candidatos que conformarán la muestra
1. Se le informará que fue seleccionado para constituir la muestra.
2. Se coordinará la fecha, lugar y hora para orientarle y recoger la firma en el consentimiento y coordinar el procedimiento para la recolección de datos.
Apéndice I
Consentimiento informado para un estudio con riesgo mínimo

SISTEMA UNIVERSITARIO ANA G. MÉNDEZ
Universidad Metropolitana
San Juan, Puerto Rico
Escuela de Educación

Consentimiento informado para un estudio con riesgo mínimo

Estudio de caso de la capacitación profesional del maestro de matemáticas del nivel cuarto al sexto grado

Descripción del estudio y el rol de su participación

La Sra. Ana M. Pérez Rivera lo está invitiendo a participar en un estudio de investigación. La Sra. Ana M. Pérez es la Investigadora Principal y la Dra. Alicia González de la Cruz es la mentora, que es profesora del Sistema Universitario Ana G. Méndez (SUAGM). El propósito de esta investigación de estudio de caso es explorar, describir y entender las experiencias para desarrollar conocimiento del contenido para la enseñanza de las matemáticas de por lo menos seis maestros del nivel de cuarto al sexto grado, luego de haber participado de una iniciativa de capacitación profesional del programa Mathematics and Science Partnership (MSP). Este programa está adscrito a la National Science Foundation (NSF) que apoya alianzas entre instituciones de educación secundaria y la educación de k-al 12, para fortalecer y transformar la educación de matemáticas y ciencias.

Su participación en esta investigación consistirá en lo siguiente: Se le invita a participar de una investigación que utiliza la metodología cualitativa, con el diseño de estudio de caso. La iniciativa del programa de desarrollo profesional “Mathematics and Science Partnership: Teachers Improving Academic Achievement” (MSP; TIAA) de la Universidad Metropolitana, fue seleccionada para el estudio de caso. Se seleccionarán 6 maestros que enseñan matemáticas en el nivel de cuarto al sexto grado que hayan participado en actividades de desarrollo profesional de esta iniciativa. La participación en este estudio será voluntaria y consentida en forma escrita. Los participantes tienen derecho a preguntar y recibir las respuestas sobre la investigación. Entre los derechos de los participantes está el que estos puedan terminar su participación antes de finalizar el estudio si así lo desean. Una vez se oriente a los participantes y los mismos consientan en participar se procederá a la recopilación de datos. Los datos se recopilarán utilizando cuatro técnicas: entrevistas a maestros, notas de reflexión por los maestros, respuestas de maestros a una pregunta usando la técnica de Respuesta Inmediata y cotejo
de documentos del programa Mathematics and Science Partnership. El procedimiento para la recopilación de datos se detalla inmediatamente.

El procedimiento para la recolección de datos se compone de 4 fases.

Fase I: Recopilación de datos con la técnica de Entrevista

Entrevistas a maestros. El diseño del instrumento de entrevistas del maestro tendrá preguntas para describir los temas de matemáticas y aspectos del programa de capacitación profesional que han aportado a su conocimiento de contenido para la enseñanza de las matemáticas, y a la implantación de sus prácticas educativas basadas en la reforma de los estándares. También se incluirán preguntas dirigidas a explorar e interpretar las creencias y convicciones del maestro sobre la enseñanza y el aprendizaje de las matemáticas. Se les preguntará sobre cambios en sus creencias y en la enseñanza y cómo están utilizando las experiencias obtenidas en el programa de capacitación profesional para implantar la enseñanza. La entrevista tendrá una duración de alrededor de una hora. La misma se grabará utilizando audio digital.

Fase II

Respuesta Escrita Inmediata: Luego de la entrevista el maestro participante recibirá el instrumento con la técnica Respuesta Escrita Inmediata para que comience a contestarlo en forma escrita. Esta técnica de evaluación se utilizará para obtener información acerca del conocimiento del contenido de la materia, del pedagógico y el especializado sobre la enseñanza de las matemáticas que posee el maestro. Le tomará alrededor de 30 minutos completarla misma.

Fase III

En la fase III se le entregará al maestro el instrumento para recoger los datos en la técnica Notas de Reflexión. Además, se le orientará sobre cómo recopilar los datos con esta técnica. En esta fase, la investigadora y el participante acordarán una fecha en alrededor de dos semanas a partir de haberse dado la orientación sobre las notas de reflexión, para comenzar la fase IV. Durante el término de esas dos semanas la investigadora transcribirá la entrevista y el participante habrá completado las dos notas de reflexión.

Las notas de reflexión tienen tres frases guía que son las siguientes:

Primera frase guía: Durante la enseñanza de este tema utilicé.......

Segunda frase guía: Durante la lección de clases los estudiantes......
Tercera Frase Guía: Al finalizar la clase quedó muy satisfecho (a) con

Las notas de reflexión es un documento preparado por la investigadora para recoger datos relacionados a las creencias sobre la enseñanza que tiene el maestro, al rol que debe desempeñar el maestro, el rol que debe desempeñar el estudiante y sobre la naturaleza del aprendizaje. Servirá además para identificar elementos del programa de capacitación que aportaron a la implantación de sus prácticas educativas. Las notas de reflexión contienen información sobre la fecha, el contenido y objetivo de la clase.

Fase IV:

En esta fase el participante corrobora la transcripción de la entrevista. Además, le hace entrega a la investigadora las dos notas de reflexión.

Documentos del programa de desarrollo profesional: La técnica de cotejo de documentos también se utilizará para recopilar datos. Se revisarán documentos del programa de desarrollo profesional para recopilar información sobre el diseño, las metas, los objetivos, los temas desarrollados, avalúos y su alcance. Los mismos proveerán información para identificar los temas de matemáticas, las diferentes estrategias que se planificaron y las que se implantaron para capacitar al maestro.

Se tomarán medidas para garantizar la confidencialidad de los participantes, a través del uso de códigos. Todo documento del estudio se mantendrá bajo llave por cinco años bajo el cuidado de la investigadora en su residencia principal. El material en computadora se mantendrá con una contraseña que solamente conocerá la investigadora. Luego de cinco años se triturarán los documentos y formularios que puedan identificar a los participantes. Lo documento en el archivo electrónico serán eliminados. Solamente la investigadora principal tendrá acceso a los documentos.

A usted le tomará aproximadamente (una hora para participar de la entrevista semiestructurada, alrededor de 30 minutos para completar el instrumento de Respuesta escrita inmediata y alrededor de 20 minutos para completar las dos notas de reflexión) para participar en esta investigación.

Ana G. Mendez University System
Institutional Review Board (IRB)

Protocol No. 01-504-15
Approval Date March 26, 2013
Expiration Date March 25, 2016

SUAGM IRB_Consent_Forma_Corta
Versión Española
Aprobado hasta 7/2013
Revisado 7/2012
Riesgos e Incomodidades

Existen ciertos riesgos e incomodidades que pudiera estar experimentando si decide participar de la investigación. Estos pudieran ser cansancio, hambre y desmotivación. Si el participante no desea continuar en el estudio, se puede retirar en cualquier momento. La posibilidad de daño físico, mental, emocional o moral a los sujetos está reducida.

Sin embargo no debe preocuparse, pues en caso de que ocurra algún evento inesperado contamos con un plan de acción para atender sus necesidades. Estas incluyen:

En caso de lesión física como resultado de su participación en este estudio usted recibirá tratamiento médico libre de costo, en la sala de emergencia del Centro Médico de Río Piedras. En caso de sufrir alguna lesión mental como resultado de su participación en la investigación tendrá disponible una evaluación inicial en la Institución Universitaria. De ser necesario será referido a su médico primario para tratamiento.

El Sistema Universitario Ana G. Méndez no provee alternativa de pago u otra forma de compensación por posibles daños relacionados con su participación en la investigación. Por ejemplo salarios no devengados, pérdida de tiempo invertido o sufrimiento. Ninguna forma de remuneración económica será otorgada directamente a usted. Sin embargo, al firmar esta forma de consentimiento no renuncia a sus derechos legales.

Posibles Beneficios

El maestro participante estará aportando al mejoramiento de la educación. Los hallazgos proverán información que le permitirá a los sistemas educativos fortalecer su capacidad para integrar nuevas soluciones a los procesos de la enseñanza y el aprendizaje. Los conocimientos que se generen de la investigación aportarán a la teoría sobre programas de desarrollo profesional efectivos y sobre el conocimiento del contenido del maestro para la enseñanza de las matemáticas. Así mismo contribuirían a la implantación de iniciativas de capacitación profesional que mejoren la capacidad del maestro, el aprendizaje de los estudiantes y el mejoramiento del currículo.

Incentivos

No se darán incentivos por participar de la investigación.
Protección de la Privacidad y Confidencialidad

Toda información relacionada a su identidad será manejada de manera privada y confidencial y será protegida en todo momento. Bajo ninguna circunstancia se compartirá información del participante con terceros. Los datos recopilados se guardarán en un lugar privado, seguro y bajo llave. Cualquier documento recopilado será almacenado en un archivo de metal con llave custodiado por la investigadora Sra. Ana M. Pérez Rivera, y localizado en su residencia principal. Los documentos digitales se archivarán en disco portátil con una contraseña que solamente conocerá la investigadora, el cual se colocará en el archivo de metal en un sobre separado y sellado, por un periodo de cinco (5) años. Una vez finalicen los cinco años se triturarán los documentos almacenados en archivos y se borrarán las grabaciones del disco portátil donde estarán almacenados los documentos en formato digital. Su identidad será protegida utilizando códigos para identificar a todos los documentos que se generen que incluyen: el consentimiento, la recopilación de datos en las notas de reflexión, las respuestas escritas inmediatas, las transcripciones de las entrevistas, las grabaciones digitales de las entrevistas, el instrumento Perfil de los Participantes, el Instrumento Hoja de Control de los Participantes, el instrumento Evaluación de Candidatos para la Selección de la Muestra y el instrumento Protocolo para Establecer el Diálogo con los Interesados en la investigación (Screening). Cada maestro se identificará como M1, M2, M3, M4, M5 y M6. Se tendrá una hoja de control custodiada y mantenida bajo llave por la investigadora donde se identificará el nombre del participante y el código asignado. Las entrevistas se identificarán con E, las notas de reflexión con NR, la Respuesta Escrita Inmediata con REI, de tal forma que cada maestro se identifica con la letra M, un número entre 1 al 6 y la letra correspondiente a la técnica de recopilación de datos.

Decisión sobre su participación en este estudio

Su participación en este estudio es totalmente voluntaria. Usted tiene todo el derecho de decidir participar o no de este estudio. Si usted decide participar en este estudio tiene el derecho de retirarse en cualquier momento sin penalidad alguna.

Información contacto

Si usted tiene alguna duda o inquietud correspondiente a este estudio de investigación o si surge alguna situación durante el periodo de estudio, por favor contacte a:

Ana M. Pérez Rivera la Investigadora, al correo electrónico, perezwriveraana@hotmail.com o a los números de teléfonos 787-315-6355, 787-893-0189.
Dra. Alicia González de la Cruz al correo electrónico agonzalez115@suagm.edu o al número de teléfono 787-766-1717, extensión 6409.

Si usted tiene preguntas sobre sus derechos como sujeto de investigación por favor comuníquese con la Oficina de Cumplimiento en la Investigación del SUAGM al 787-751-3120 o compliance@suagm.edu

Consentimiento

He leído este documento y se me ha dado la oportunidad de aclarar todas las dudas relacionados con el mismo. Por esta razón estoy de acuerdo en participar en esta investigación.

<table>
<thead>
<tr>
<th>Nombre del Participante</th>
<th>Firma</th>
<th>mes/día/año</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Nombre del Investigador Principal</th>
<th>Firma</th>
<th>mes/día/año</th>
</tr>
</thead>
</table>

NOTA:

Es nuestra responsabilidad proveerle con una copia de este documento. Favor de seleccionar la opción de su preferencia.

☐ Certifico que se me entregó copia de este documento.

☐ Certifico que se me ofreció copia de este documento y no deseo tener copia del mismo.
Apéndice J
Hoja de control de los participantes

<table>
<thead>
<tr>
<th>Código</th>
<th>Técnica</th>
<th>Nombre del Participante/Programa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maestro: M1-E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M1-NR</td>
<td>Entrevista</td>
<td></td>
</tr>
<tr>
<td>M1-REI</td>
<td>Notas de Reflexión</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Respuesta Escrita Inmediata</td>
<td></td>
</tr>
<tr>
<td>Maestro: M2-E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M2-NR</td>
<td>Entrevista</td>
<td></td>
</tr>
<tr>
<td>M2-REI</td>
<td>Notas de Reflexión</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Respuesta Escrita Inmediata</td>
<td></td>
</tr>
<tr>
<td>Maestro: M3-E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M3-NR</td>
<td>Entrevista</td>
<td></td>
</tr>
<tr>
<td>M3-REI</td>
<td>Notas de Reflexión</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Respuesta Escrita Inmediata</td>
<td></td>
</tr>
<tr>
<td>Maestro: M4-E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M4-NR</td>
<td>Entrevista</td>
<td></td>
</tr>
<tr>
<td>M4-REI</td>
<td>Notas de Reflexión</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Respuesta Escrita Inmediata</td>
<td></td>
</tr>
<tr>
<td>Maestro: M5-E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M5-NR</td>
<td>Entrevista</td>
<td></td>
</tr>
<tr>
<td>M5-REI</td>
<td>Notas de Reflexión</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Respuesta Escrita Inmediata</td>
<td></td>
</tr>
<tr>
<td>Maestro: M6-E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M6-NR</td>
<td>Entrevista</td>
<td></td>
</tr>
<tr>
<td>M6-REI</td>
<td>Notas de Reflexión</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Respuesta Escrita Inmediata</td>
<td></td>
</tr>
<tr>
<td>Escuela: EA, EB, EC, ED y así sucesivamente hasta cubrir las participantes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSP</td>
<td>La iniciativa para el estudio de caso</td>
<td></td>
</tr>
</tbody>
</table>